SOFIA Highlights: Star formation

A near- and mid-infrared image of galaxy IC 342 from the Spitzer Space Telescope

An international team of researchers used NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, to make maps of the ring of molecular clouds that encircles the nucleus of galaxy IC 342. The maps determined the proportion of hot gas surrounding young stars as well as cooler gas available for future star formation. The SOFIA maps indicate that most of the gas in the central zone of IC 342, like the gas in a similar region of our Milky Way Galaxy, is heated by already-formed stars, and relatively little is in dormant clouds of raw material.

An infrared image of the W43 star-forming region

Researchers on board NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, observed the collapse of portions of six interstellar clouds on their way to becoming new stars that will be much larger than our sun.

When a gas cloud collapses on itself, the cloud’s own gravity causes it to contract and the contraction produces heat friction. Heat from the contraction eventually causes the core to ignite hydrogen fusion reactions creating a star.

Images of the S140 core

Information about the star formation process, as well as early tests of the optical quality and stability of the telescope in NASA's Statospheric Observatory for Infrared Astronomy (SOFIA), were provided by analyses of infrared images of the Sharpless 140 nebula performed by Paul Harvey of the University of Texas at Austin with collaborators from Cornell University, Ithaca College, and the SOFIA scientific staff. The results of their work were published in a May 2012 special SOFIA-dedicated issue of The Astrophysical Journal Letters.

FORCAST images of G35 at wavelengths of 31 and 37 microns

Researchers using the airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured the most detailed mid-infrared images yet of a massive star condensing within a dense cocoon of dust and gas.

The star is G35.20-0.74, more commonly known as G35. It is one of the most massive known protostars and is located relatively close to Earth at a distance of 8,000 light years.

SOFIA/FORCAST mid-IR image of the Sagittarius A East region in the Galactic Center

SOFIA/FORCAST images of the H II (ionized hydrogen) complex G0.02-0.07 resolved a string of three compact HII regions (labeled A, B, and C in Figure 1) plus two new infrared sources designated FIRS 1 and 2 (Figures 1 and 2). G0.02-0.07 is located in the Sagittarius A (Sgr A) region, 6 pc (20 light years) from our line of sight to the center of the Milky Way Galaxy. The Galactic Center includes a hot, turbulent interstellar medium, cloud-cloud collisions, stellar winds, and supernova shocks.

Mid-infrared image of the W3 star forming region from SOFIA/FORCAST

Researchers using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured new images of a recently born cluster of massive stars named W3A. The cluster is seen (inset) lurking in the depths of the large gas and dust cloud from which it formed. The larger image shows the overall structure of the W3 region, lying 6,400 light years away in the direction of the constellation Perseus, as seen at near-infrared wavelengths by the Spitzer Space Telescope.

Mid-infrared image of the W40 star forming region

A new image from NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, provides the highest resolution mid-infrared image taken to-date of the massive star formation region in our galaxy known as W40.

Three-panel comparison of Orion M42

A mid-infrared mosaic image from SOFIA (the Stratospheric Observatory for Infrared Astronomy) offers new information about processes of star formation in and around the nebula Messier 42 in the constellation Orion. The image data were acquired using the Faint Object Infrared Camera for the SOFIA Telescope, or FORCAST, (principal investigator Terry Herter, Cornell University) during SOFIA’s Short Science 1 observing program in December 2010.