Spotlight | Image |
---|---|
NASA's Flying Observatory SOFIA to Explore Magnetic Universe and Beyond
NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, is preparing for its 2018 observing campaign, which will include observations of celestial magnetic fields, star-forming regions, comets, Saturn’s giant moon Titan and more. This will be the fourth year of full operations for SOFIA, with observations planned between February 2018 and January 2019. Research flights will be conducted primarily from SOFIA’s home base at NASA’s Armstrong Flight Research Center. Highlights from these observations include: |
![]() |
Does New Horizons’ Next Target Have a Moon?
Scientists were already excited to learn this summer that New Horizons’ next flyby target – a Kuiper Belt object a billion miles past Pluto -- might be either peanut-shaped or even two objects orbiting one another. Now new data hints that 2014 MU69 might have orbital company: a small moon. |
![]() |
Observations of a Comet’s First Passage through the Solar System Reveals Unexpected Secrets
Comets are our most direct link to the earliest stages of the formation and evolution of the solar system. Only every few years is a new comet discovered that is making its first trip to the inner solar system from the Oort Cloud, a zone of icy objects enveloping the solar system. Such opportunities offer astronomers a chance to study a special class of comets. |
![]() |
Catching the Shadow of a Neptunian Moon
Researchers on the flying observatory SOFIA, the Stratospheric Observatory for Infrared Astronomy, are preparing for a two-minute opportunity to study the atmosphere of Neptune’s moon Triton as it casts a faint shadow on Earth’s surface. This is the first chance to investigate Triton’s atmosphere in 16 years. |
![]() |
Astronomy from 40,000 Feet and 43.5 Degrees South
The Stratospheric Observatory for Infrared Astronomy, SOFIA, completed its fourth set of observations from Christchurch, New Zealand. The team spent seven weeks operating from the U.S. Antarctic Program facility at Christchurch International Airport, enabling researchers onboard to observe celestial objects that are best studied from the Southern Hemisphere. |
![]() |
SOFIA In The Right Place At The Right Time to Study Next New Horizons Flyby Object
NASA’s airborne observatory, SOFIA, was in the right place at the right time to study the environment around a distant Kuiper Belt object, 2014 MU69, which is the next flyby target for NASA’s New Horizons spacecraft. |
![]() |
SOFIA Arrives in New Zealand to Observe Southern Skies
The Stratospheric Observatory for Infrared Astronomy, SOFIA, arrived in Christchurch, New Zealand, on June 22 to conduct seven weeks of observing flights from the Southern Hemisphere. |
![]() |
SOFIA Finds Cool Dust Around Energetic Active Black Holes
Researchers at the University of Texas San Antonio using observations from NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, found that the dust surrounding active, ravenous black holes are much more compact than previously thought. |
![]() |
Understanding Star Formation in the Nucleus of Galaxy IC 342
An international team of researchers used NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, to make maps of the ring of molecular clouds that encircles the nucleus of galaxy IC 342. The maps determined the proportion of hot gas surrounding young stars as well as cooler gas available for future star formation. The SOFIA maps indicate that most of the gas in the central zone of IC 342, like the gas in a similar region of our Milky Way Galaxy, is heated by already-formed stars, and relatively little is in dormant clouds of raw material. |
![]() |
SOFIA Undergoing Engine Maintenance
On April 12, during a test of SOFIA’s systems involving an engine run, an anomaly occurred calling into question the flight-worthiness of Engines 1 and 4. The SOFIA maintenance team is investigating this issue. In the interim, program management has made a decision to replace the engines with spare engines. The observatory will resume flights after safety and engineering checks are completed. This down time has resulted in the estimated loss of at least eight science flights. |
![]() |
SOFIA Confirms Nearby Planetary System is Similar to Our Own
NASA’s flying observatory, the Stratospheric Observatory for Infrared Astronomy, SOFIA, recently completed a detailed study of a nearby planetary system. The investigations confirmed that this nearby planetary system has an architecture remarkably similar to that of our solar system. |
![]() |
Don’t Judge an Asteroid by its Cover: Mid-infrared Data from SOFIA Shows Ceres’ True Composition
New observations show that Ceres, the largest body in the asteroid belt, does not appear to have the carbon-rich surface composition that space- and ground-based telescopes previously indicated. |
![]() |
NASA Flying Observatory Makes Observations of Jupiter Previously Only Possible from Space
For the first time since the twin Voyager spacecraft missions in 1979, scientists have produced far-infrared maps of Jupiter using NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA. These maps were created from the researchers’ studies of the circulation of gases within the gas giant planet’s atmosphere. |
![]() |
First Images Demonstrate the Capabilities of SOFIA’s New Instrument
This is the first polarization image from the Stratospheric Observatory for Infrared Astronomy’s new infrared camera and polarimeter, known as the High-resolution Airborne Wideband Camera-plus (HAWC+). Polarimeters measure the alignment of incoming light waves, enabling HAWC+ to map magnetic fields in star forming regions. |
![]() |