[C II] and [N II] Observations of Ionized Gas at the Edge of the Central Molecular Zone*

Bill Langer (JPL-Caltech)
January 21, 2015

Collaborators: P. F. Goldsmith¹, J. L. Pineda¹, M. A. Requena-Torres², T. Velusamy¹, H. Wiesemeyer²

1. JPL-Caltech, Pasadena, CA, USA
2. MPIFR, Bonn, Germany
The Superlative Central Molecular Zone

\[12\text{CO Intensity} \]

\[\text{[C II] Intensity}\]

\[\text{BICE } \Delta V = 175 \text{ km/s} \]

\[\text{FIR Continuum} \]

\[\text{CO from Dame et al. (2001) & Nobayama CO survey Oka et al (1998); [C II] BICE survey Nakagawa et al. (1998)} \]
Outline

• Overview of CMZ
• [N II] and [C II]
• Electron abundance
• Results
• Ionization Sources
• Conclusion

Special thanks to: Rolf Güsten and Göran Sandell for their effort during the GREAT SOFIA observing runs. Erick Young for his support in scheduling decisions. David Teyssier of HSC for his advice with the HIPE pipeline data reduction.
Central Molecular Zone (CMZ)

- CMZ ≈400 pc X 80 pc around the Galactic Center
- Giant Molecular Clouds (GMCs) ≈few×10^7 M☉
- GMCs: n(H₂) > 10 X disk
- T_{kin} ≈ 40 – 200K vs 10 - 35K
- ΔV ≈ 20 km/s vs 3-4 in disk
- H ≈ (2 – 10)×10^5 M☉

- H^+ ≈ (6–10)×10^5 M☉: WIM (H^+), HIM(H^+,He^+)
- Enhanced energy environment: HII regions, accreting black holes, X-rays, cosmic rays, supernova, turbulence.

Ionized Gas in the Galaxy

- Ionized gas is an important component of the ISM
- It occupies most of the volume
- Couples gas to magnetic fields
- Physical state of the ionized gas is a result of sources of ionization and heating (star formation rate, accreting black holes, cosmic rays, etc.)
- Boundary pressure for the HI clouds and GMCs
Distribution of CMZ Gas - Molecular

Fig. 2.—Maps of the 12CO $J = 1$–0 and 13CO $J = 1$–0 line emission integrated over the velocity range $V_{LSR} = -220$ to $+220$ km s$^{-1}$. Contours drawn at every 200 K km s$^{-1}$ for 12CO and at every 100 K km s$^{-1}$ for 13CO. Mapping areas are indicated by solid lines (four beams) and dashed lines (three beams). We have smoothed the data using a Gaussian weighting function with 60α full width at half-maximum. The distributions of the two emission lines are basically similar, while 12CO emission is typically 5 times stronger than 13CO emission. The mean 12CO/13CO luminosity ratio over the 13CO mapping area is 5.19.

Nobayama Telescope (Oka et al. 1998)
Measuring Electron Abundance (Examples)

- Radio-Wave dispersion against embedded (pulsar) or background (extragalactic) sources
- Radio continuum from thermal free-free emission
- Radio recombination lines, e.g. H110α.
- X-ray lines – Fe ions (Fe XXV) probes very hot gas
- Visual – e.g. Hα λ6563
 - Wisconsin H Alpha Mapper (WHAM)
- Far IR fine-structure lines, e.g. [C II], [N II], [O III]
 - [C II] at 1.90 THz (158 μm) and [N II] at 1.46 THz (205 μm)
 - Advantage of high spectral resolution with heterodyne receivers
Radio Continuum and Recombination

- Mezger & Pauls (1979) derived $n(e)$ distribution in CMZ using radio continuum (thermal free-free) and recombination lines
- Modeled WIM as two oblate spheroids
 - $(225 \text{ pc})^2 \times 90 \text{ pc}$ with $n(e) \approx 8 \text{ cm}^{-3}$ & $T(e) \approx 5000 \text{ K}$, $M(H^+) \approx 4.7 \times 10^5 \text{ M}_\odot$
 - $(95 \text{ pc})^2 \times 55 \text{ pc}$ with $n(e) \approx 18 \text{ cm}^{-3}$ & $T(e) \approx 5000 \text{ K}$, $M(H^+) \approx 1.2 \times 10^5 \text{ M}_\odot$
- Total inner $n(e) \approx 26 \text{ cm}^{-3}$ & $M(H^+) \approx 5.9 \times 10^5 \text{ M}_\odot$
- $n(e)$ is very high compared to $n(e) \approx 0.01$ for Disk WIM
n(e) from Radio Dispersion

Lazio & Cordes (1998) conclude dispersion is due to scattering off either:

a. Photoionized skins of molecular clouds with $T(e) \approx 10^4$ K and $n(e) > 10^3$ cm$^{-3}$, or
b. Interface between molecular clouds and the hot ambient gas with $T(e) \approx 10^{5-6}$ K and $n(e) \approx 5 - 50$ cm$^{-3}$

Roy (2013) observed 62 compact extragalactic sources towards CMZ

a. Scattering medium is patchy on scales of $\approx 10'$ (25 pc) with $n(e) \approx 10$ cm$^{-3}$

b. Ionized interfaces with dense GMCs are likely source of scattering.

see also review by Ferriere et al. (2007)
HIM: X-Ray Observations

Iron distribution

- X-ray thermal emission at 0.5 to 2 keV (ROSAT) is enhanced towards CMZ - Hot Ionized Medium (HIM)
- Hard X-ray emission from Fe XXV and Fe XXVI (Koyama et al. 1996): \(kT > \) several keV, \(n(e) \approx 0.03 \text{ cm}^{-3} \), \(M(H^+) \approx 10^5 \ M_\odot \)
n(e) from [N II] and [C II]

• Use [N II] and [C II] far-infrared lines to probe the electron density and ionization in the CMZ
• ADVANTAGE: High spectral resolution identifies components and probes physical properties
• [C II] traces all ionized regions as I.P. = 11.1 eV
• [N II] traces more highly ionized gas: I.P. = 14.53 eV
• Herschel HIFI OTF [C II] strip maps → morphology
• SOFIA GREAT [C II] and [N II] pointed observations along a strip across the edge of the CMZ → n(e)
Edge of the CMZ in CO and [C II]

12CO NANTEN map of Giant Magnetic Loops and CMZ (Fukui et al. 2006)

GOT C+ [C II] Survey
Langer et al. (2014)

Sgr E

Loop 1

r ≈ 670 pc

r ≈ 200 pc

359° 358° 357°
12CO map from Oka et al. 1998

Herschel HIFI [C II] and Mopra 12CO

12CO/5 (358.7°, 0°)

[C II] probes the ionized edge of these GMCs

12CO/S
CMZ [C II] OTF Map

[C II] strongest at CO boundary – limb brightening

HIFI OTF
GREAT +

HIFI OTF [CII] intensity (color)
Contours CO -210 to -220 km/s (Oka 1998)
GREAT [C II] & [N II] along $b=0^\circ$

[C II] detected at all 6 LOS – 2 components

[N II] detected at 4 LOS where S/N was best – 2 components

Components

$V_{lsr}(\text{km/s})$ $\Delta V(\text{km/s})$

-207 \approx25-30
-174 \approx25-30
GREAT [CII] & [NII] – Data Reduction Issues

Atmospheric H$_2$O line in [C II] band
Emission in reference off position
CO and HI ($b=0^\circ$)

ThrUUMS (Three-mm Ultimate Mopra Milky Way Survey)

HI Survey (McClure-Griffiths et al. 2012)
Line Parameters

\textbf{Table 1. Integrated line intensities}

\begin{tabular}{lcccc}
\hline
Los & \text{(C Ii)}^{a,b} & \text{(N II)}^{c} & \text{I(CO)} & \text{I(H I)} \\
\hline
\text{V}_{lsr} = -207 \text{ km s}^{-1} & & & & \\
358.45+0.0 & 63.4 & 26.4 & 6.7 & 1047 \\
358.55+0.0 & 45.4 & 15.4 & 26.6 & 1904 \\
358.60+0.0 & 47.6 & 7.1 & 60.6 & 2189 \\
358.65+0.0 & 38.6 & - & 101.9 & 2539 \\
358.70+0.0 & 45.4 & 12.4 & 98.9 & 2923 \\
358.75+0.0 & 57.4 & - & 110.5 & 3235 \\
\text{V}_{lsr} = -174 \text{ km s}^{-1} & & & & \\
358.45+0.0 & 21.1 & 8.2 & - & 730 \\
358.55+0.0 & 12.2 & 8.8 & - & 1212 \\
358.60+0.0 & 43.0 & 3.7 & - & 1544 \\
358.65+0.0 & 25.5 & - & - & 1855 \\
358.70+0.0 & 15.3 & 5.3 & - & 2177 \\
358.75+0.0 & 21.8 & - & 9.8 & 2522 \\
\hline
\end{tabular}

\begin{itemize}
\item a) Integrated intensities are in units of K km s\(^{-1}\). We only report detections with a SNR \(\geq 3\), see text.
\item b) Typical rms noise in the [C Ii] integrated intensity is \(\sim 1.4\) K km s\(^{-1}\).
\item c) Typical rms noise in the [N II] integrated intensity is \(\sim 1.3\) K km s\(^{-1}\).
\end{itemize}

SNR ranges from 4 to 20 for I(N II) and 8 to 45 for I(C II)
\(\Delta V\) of order 25 to 35 km/s
n(e) from [N II] – 2 levels

Electron collisions dominate excitation.
Solve the population of the 3 levels assuming $\tau << 1$.

$n(e)$ sensitive to ratio of 122\(\mu\) to 205\(\mu\) line only for $n(e) > 10$ cm\(^{-3}\)
1-0 line difficult to detect for $n(e) < \text{few cm}^{-3}$ & 2-1 is even harder.

\[[\text{N II}] \text{ Excitation} \]
\[N(N^+) = 6 \times 10^{16} \text{ cm}^{-2} \]
\[\Delta V = 25 \text{ km/s} \]

\[\begin{align*}
\text{Energy/k (K)} & \quad 0 & \quad 50 & \quad 100 & \quad 150 & \quad 200 \\
\text{3}P_2 & \quad 2459 \text{ GHz} & \quad 121.9 \mu \text{m} & \\
\text{3}P_1 & \quad 1461 \text{ GHz} & \quad 205.2 \mu \text{m} & \quad 2.1 \times 10^{-9} \text{ s}^{-1} & \quad \Delta E/k = 70.2 \text{ K} \\
\text{3}P_0 &
\end{align*} \]
\(\tau << 1 \)

\[
I_{10}([N\text{II}]) = T_{10}(K) \Delta V
\]

\[
= \frac{hc^3}{8\pi V_{10}^2} A_{10} f_1(N^+) N(N^+) \text{ cm}^{-2}
\]

Where \(f_1 \) is the fractional population of \(^2\text{P}_1\) state of \(N^+\) and is a function of \(n(e)\)

With only one line need to estimate \(N(N^+)\)

Assume uniform conditions: \(N(N^+) = n(N^+)L \text{ cm}^{-2}\)

\[
I_{10}([N\text{II}]) \approx 5 \times 10^{-16} (n(N^+)L) f_1 \text{ cm}^{-2}
\]
$n(e)$ from $[N\,II] - 1$ transition (2/2)

$n(N^+) = x(N^+)n(H^+)$

$n(H^+) \approx n(e)$

$I_{10}([N\,II]) \approx 0.16x_-(N^+)L_{pc}n(e)f_1(N^+) \text{ cm}^{-2}$

$f_1(N^+)$ is independent of $N(N^+)$ if $\tau \ll 1$

$n(e) \ll n_{cr}(e): f_1 \propto n(e)$

$n(e) \approx \left[\frac{6.4I([N\,II])n_{cr}(e)}{L_{pc}x_-(N^+)} \right]^{0.5}$

$n(e) \gg n_{cr}(e): f_1 \rightarrow \text{const}$

$n(e) \propto \left[\frac{I([N\,II])}{L_{pc}x_-(N^+)} \right]^{\approx 1}$
Model Parameters

-207 km/s component
 - [C II] limb brightened
 - Ionized layer ≈ 15 pc thick
 - $X(N^+) \approx 1.6 \times 10^{-4}$ (3xSolar)
 - Solve $n(e)$ for each $I([NII])$
 - Not very sensitive to $x(N^+)$ & L_{pc}

-174 km/s component
 - OTF HIFI map of this weaker [C II] component is not good enough to reveal morphology of emission region
 - Assume same parameters as -207 km/s component
Electron and Column Densities

Table 2. Electron density and nitrogen column density

| LOS | V_{lsr} a $|$ n(e) b | N(N$^+$) c | N(H$^+$) | n(e) d | N(N$^+$) e | N(H$^+$) |
|---------|----------------------|-------------|-----------|--------|------------|-----------|
| 358.45 | -207 | 20.7 | 1.5e17 | 9.6e20 | 9.9 | 7.5e16 | 4.6e20 |
| 358.55 | -207 | 14.6 | 1.1e17 | 6.8e20 | 10.4 | 7.9e16 | 4.8e20 |
| 358.60 | -174 | 9.1 | 6.9e16 | 4.2e20 | 6.3 | 4.8e16 | 2.9e20 |
| 358.65 | -174 | - | - | - | - | - | - |
| 358.70 | -174 | 12.8 | 9.7e16 | 5.9e20 | 7.7 | 5.9e16 | 3.6e20 |
| 358.75 | -174 | - | - | - | - | - | - |
| Average | -207 | 14.3 | 1.1e17 | 6.6e20 | 8.6 | 6.5e16 | 4.0e20 |

a) In km s$^{-1}$. b) Densities in cm$^{-3}$. c) Column densities in cm$^{-2}$. d) In cm$^{-3}$. e) All LOS are along b = 0°.

Table 3. C$^+$ column densities and intensities

<table>
<thead>
<tr>
<th>LOS</th>
<th>N(C$^+$)</th>
<th>I_{H^+}([Cu])</th>
<th>I_{H^+}([C II])</th>
<th>N_{H^+}(C$^+$)</th>
<th>N_{H^+}(H$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-207</td>
<td>4.9e17</td>
<td>64.1</td>
<td>-0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-207</td>
<td>3.5e17</td>
<td>38.5</td>
<td>7.0</td>
<td>4.2e17</td>
<td>8.2e20</td>
</tr>
<tr>
<td>-207</td>
<td>2.2e17</td>
<td>18.3</td>
<td>29.3</td>
<td>1.8e18</td>
<td>3.5e21</td>
</tr>
<tr>
<td>-207</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-174</td>
<td>3.0e17</td>
<td>31.3</td>
<td>14.1</td>
<td>8.6e17</td>
<td>1.7e21</td>
</tr>
<tr>
<td>-174</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| Average | -207 | 3.4e17 | 38.1 | 16.8 | 1.0e18 | 2.0e21 |
| Average | -174 | 2.0e17 | 16.9 | 11.5 | 7.0e17 | 1.4e21 |

a) All LOS are at b = 0°. b) Column density in cm$^{-2}$. c) Intensity of [Cu] in the [N II] emission region in K km s$^{-1}$. d) V_{lsr} in km s$^{-1}$. e) Negative intensities are not included. f) Assumes T$_{e}$=100K and n(H$_2$) = 300 cm$^{-3}$.

- **V_{lsr} = -207 km/s component**
 - $n(e) = 9 - 21$ cm$^{-3}$
 - $N(N^+) = (7 - 15) \times 10^{16}$ cm$^{-2}$

- **V_{lsr} = -174 km/s component**
 - $n(e) = 6 - 10$ cm$^{-3}$
 - $N(N^+) = (5 - 8) \times 10^{16}$ cm$^{-2}$
Results

• [N II] and [C II] Detections provide evidence of hot highly ionized gas with n(e) ≈ 5 to 25 cm\(^{-3}\) in a thick layer surrounding GMCs in the Sgr E region.

• n(e) consistent with suggestions by Lazio & Cordes (1998) and Roy (2013) that dispersion of radio waves in the CMZ is primarily by scattering at the interface of clouds with a dense hot ionized medium.
Ionization Sources (1/3)

- Electron collisional ionization
- Cosmic ray ionization
- EUV photoionization
- X-ray photoionization
- Proton charge exchange
 - UV + H \rightarrow H$^+$ + e
 - H$^+$ + N \leftrightarrow H + N$^+$ ($\Delta E = 0.94$ eV $\approx 11,000$ K)
Ionization Sources (2/3)

- Electron collisional ionization requires very high kinetic temperatures as I.P. = 14.53 eV

- Cosmic ray ionization needs 10^{-12}s^{-1}
 - Observations of H_3^+ in CMZ (Goto et al. 2014) suggest rate is too low by orders of magnitude
Ionization Sources (3/3)

- EUV photoionization: Need EUV flux 6×10^6 photons/cm2/s – source massive star formation (O & B)
- X-ray photoionization of nitrogen & carbon about 10^3 larger than corresponding H photoionization
 - Sources: diffuse X-rays, stellar sources, accreting black holes (stellar and massive)
- Charge exchange: $H^+ + N \leftrightarrow H + N^+ (\Delta E = 0.94$ eV)
 - H ionized by UV
 - $T_{\text{kin}} \approx 6,000$ K to 15,000 K depending on theoretical cross sections (see Lin et al. 2005; Langer et al. 2015)
 - Heating source: Shocks? Turbulent dissipation? EUV & X-rays?
Compact and Diffuse HII Sources

- Sgr E is an active star-forming HII region associated with a GMC
- VLA radio continuum map of Sgr E region (Liszt 1992)
 - 18 compact HII sources
 - $n(e) \approx \text{few} \times 10^2 \text{ cm}^{-3}$
 - ionizing stars are likely B0 or brighter
 - diffuse emission $l = 358.8^\circ$ to 358.95°
Edge of CMZ in IR

24 µm sources associated with the CO cloud, and the edge of the [C II] limb brightened arc

Spitzer 24 µm (blue)
Herschel 70 µm (green)
Herschel 500 µm (red)
from Molinari et al. (2014)
Hot Gas in the CMZ Traced by X-rays

Iron distribution

Suzaku image

Fe I (neutral)

Fe XXV (He-like)

Fe XXVI (H-like)

$T_{\text{kin}} \approx 5 - 7 \text{ keV}$

$\approx 50 \text{ pc}$

Suzaku X-ray satellite
(Koyama et al. 2007; from Matsumoto presentation)

Diffuse and discrete (> 9000)
X-Ray sources detected by Chandra (Wang et al. 2002; Muno et al. 2009)
Red: 1 – 3 keV
Green: 3 – 5 keV
Blue: 5 – 8 keV
Summary

- Spectrally resolved [C II] and [N II] far-IR lines provide detailed information about the location, morphology, and physical environment of the dense ionized gas in the CMZ.
- We find $n(e) \approx 5 - 25 \text{ cm}^{-3}$ at the interface of GMCs in regions about 10 – 20 pc in size.
- Mapping the ionized gas throughout the CMZ in spectrally resolved [N II] is difficult because of the weakness of the emission lines.
- GREAT on SOFIA provides a platform to study the electron abundance and ionization in select regions of the CMZ.
- To trace the highly ionized gas throughout the CMZ it will be important to extend the [N II] observations using a survey instrument on balloon borne or orbital platforms.