Heterodyne Array Technology for SOFIA

SOFIA Tele-Talk

Paul Goldsmith
Imran Mehdi, Jose Siles, Jon Kawamura
Jet Propulsion Laboratory
January 22, 2014
Outline

• Objectives and Goals
 – Objectives and goals of investigation
 – Submillimeter Tracers of High-Mass Star Formation
 – Water and Solar System Astronomy

• Technical Activities
 – HEB Mixers
 – Accomplishments and milestones achieved, findings, results
 – Work remaining and upcoming milestones and their success criteria

• Final Thoughts
Objectives and Goals

Submillimeter Tracers of Complex High-Mass Star Forming Regions
Line Diagnostics Probe Different Physical Processes including UV Irradiation, Shocks, Outflows…
CO 8-7 @ 921 GHz
2.5 hr, beam=24"

OT1 Goicoechea et al.
7.5’ x 11.5’ Maps of Orion
UV-irradiated neutral gas
Complex kinematics → line profiles.

5.3 hr, beam=26"

C⁺ @ 1900 GHz
9 hr, beam=11.6"

OT1 Goicoechea et al.
Herschel HIFI Instrument opened a new era in using C+ to trace the ISM – High velocity resolution allows kinematic location of emission features.

Spiral arm tangent

GOT C+ [CII] Distribution in the Milky Way Herschel OTKP

C+ as Tracer of Molecular Cloud Structure & Evolution

“Typical” Galactic Molecular Cloud & Surroundings

well-shielded, cool, essentially molecular interior

Transition Zone
0.3 < A_v < 1 mag
H is molec. H_2
C is ionized C^+
O is neutral O
30 < T < 120 K

THIS IMPORTANT REGION IS BEST TRACED BY [CII] 158 μm LINE

“CO-Dark H_2” adds ~30% to mass of molecular ISM (Pineda et al. 2013)

What is this material doing?

Diffuse atomic Gas
T = 100 K
n(H) = 100 cm^{-3}
The transition zone material could be collapsing onto the molecular cloud. This could provide energy to sustain turbulence (Goldbaum et al. 2011). The turbulence slows and regulates star formation.

We need to be able to obtain high spectral resolution (velocity-resolved) images of entire clouds to understand key physics and their evolution.
The Phases of the ISM and Star Formation
Herschel PACS [NII] Detection in G026.1+0.0

Relative Intensity of Two [NII] Lines Yields n(e)
Water is a Key Molecule in Terms of Cooling Dense Gas in Cloud Collapse and Protostar Formation

Herschel HIFI instrument observed many water lines but only up to ~ 2 THz

Two low-lying transitions are prime targets for higher-frequency instrument

1_{11}-2_{20} 2969 GHz

1_{10}-2_{10} 2774 GHz
Transitions of ortho- and para-H_2O detected in disk of TW Hydrae ($D = 54$ pc)

Modestly young star (5 – 10 Myrs)

Water in disk could fill several thousand Earth oceans (ESA Web Release)

Water likely frozen on dust grains as is the case in interstellar clouds and liberated due to heating from the star
Detection of HD in Protoplanetary Disk Around TW Hydrae

Observations carried out with Herschel PACS instrument

No velocity or line width information

HD traces entire disk unlike CO or water which are frozen in midplane

Mass of disk indicated is thus much larger than previously thought and this “old” disk may still be capable of planet formation

The HD J = 1–0 Line is at 2.7 THz

Heterodyne receiver capable of high spectral resolution now available!
Agreement of D/H between Jupiter-Family comet and Earth has revived comets as reservoir for Earth’s water

Still many issues regarding modeling of early solar system
Heterodyne detectors convert incoming high frequency photons to lower frequency by “mixing” them with a local oscillator signal. The down-converted signals are easy to amplify and analyze using standard microwave techniques, enabling spectral resolution as high as $\lambda/\Delta\lambda \approx 10,000,000$. The observing frequency of a heterodyne spectrometer can be modified by changing the frequency of the local oscillator.
Heterodyne detectors convert incoming high frequency photons to lower frequency by “mixing” them with a local oscillator signal. The down-converted signals are easy to amplify and analyze using standard microwave techniques, enabling spectral resolution as high as $\lambda/\Delta\lambda \approx 10,000,000$. The observing frequency of a heterodyne spectrometer can be modified by changing the frequency of the local oscillator.
TRL Assessment

<table>
<thead>
<tr>
<th>Component</th>
<th>Current TRL</th>
<th>Rationale</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-pixel Mixer</td>
<td>4</td>
<td>Mixer block demonstrated with 4 HEB devices packaged similar to single pixel mixer blocks</td>
<td></td>
</tr>
<tr>
<td>Ka-band synthesizer</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>Ka-band power amp</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup> stage multiplier</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup> stage multiplier</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>3<sup>rd</sup> stage multiplier</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>4<sup>th</sup> stage multiplier</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>4-pixel LO</td>
<td>4</td>
<td>Demonstrated in lab</td>
<td></td>
</tr>
<tr>
<td>4-pixel Receiver</td>
<td>3</td>
<td>Proof of concept validated, need to demonstrate in laboratory environment</td>
<td>Goal is to reach TRL 4</td>
</tr>
</tbody>
</table>
Key Challenges: Next-generation Heterodyne Instrument Development Path

- Technologies for multi-pixels
- Higher power multipliers
- Higher IF bandwidths
- Efficient LO injection scheme
- Controllable LO power per pixel
- Stable subsystem
- Higher sensitivity

SOA: HIFI focal plane unit

Multi-pixel THz Receiver
FUTURE MISSIONS FOR THIS TECHNOLOGY

SOFIA Airborne Missions

- SOFIA focal plane allows
 - > 100 pixels at 158 μm
 - > 700 pixels at 63 μm

GUSSTO Balloon

- **GUSSTO!**
 - Gal/Xgal U/LDB Spectroscopic/Stratospheric Terahertz Observatory

CIDRE

JUPITER

CCAT Millimetron

HIFI (follow on)
Objectives and Goals—Technology Development

- While HIFI has been successful, heterodyne systems at frequencies above 1.5 THz are still in their infancy, and dramatic improvements can be anticipated if technology program is available to support this.

- High spectral resolution observations are not significantly affected by background, and thus have great potential for platforms like SOFIA.

- The key objectives are to:
 - (1) improve pixel sensitivity;
 - (2) develop arrays to enable submillimeter heterodyne cameras;
 - (3) increase bandwidth of the 1.9 THz LO subsystem, and
 - (4) extend frequency range to cover up to 5 THz frequency.
HEB Technology

<table>
<thead>
<tr>
<th>SSB Noise Temperature (K)</th>
<th>Frequency (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_r(SSB) at 1.9 THz</td>
<td></td>
</tr>
<tr>
<td>HIFI: (T_r = 2400 \text{ K})</td>
<td></td>
</tr>
<tr>
<td>And (Df_{\text{IF}} \leq 4 \text{ GHz})</td>
<td></td>
</tr>
<tr>
<td>Goal: (T_r = 1000 \text{ K}), And (Df_{\text{IF}} \leq 8 \text{ GHz})</td>
<td></td>
</tr>
</tbody>
</table>

The Approach:

- Design planar antenna-coupled quasi-optical devices which are currently standard in the research community;
- Use a dedicated test bench incorporating best practices in the HEB mixer tests (reduced optical bandwidth to eliminate the direct detection effect; injection of an additional monochromatic signal to control the correlation between the noise temperature and the conversion efficiency; vacuum test chamber to eliminate atmospheric loss and related instabilities);
- Characterize devices made by MSPU lab (Moscow, Russia);
- Implement fab process with *in-situ* gold contacts which allows for the largest \(Df_{\text{IF}} \) and lowest \(T_N \) in the recent MSPU devices.
Setup for characterization of HEB mixers

Vacuum box

LO source with injection of small signal

Mesh BPF

QO HEB mixer

LHe dewar

4.3K platform in vacuum

LNA 2–5K 0.5–11 GHz

Tunable BP IF filter

IF processor

DC bias

IF output (dBm)

-90 -85 -80 -75 -70 -65 -60

1.26 1.28 1.3 1.32 1.34 1.36 1.38

IF (GHz)

Graph showing IF output vs. IF frequency.
JPL 1.9 THz HEB Devices

- Mixers working at 1.9 THz have been fabricated at JPL.
- FTS measurement shows that the mixer circuit design is slightly detuned from the design center frequency of 1.9 THz, the rest frequency of \(C^+ \). Electromagnetic modeling shows that this shift was caused by a thin layer of SiO2 applied to the mixer devices for purposes of passivation and protection.
- Design can be tuned be readily compensated by using mixer devices tuned for slightly higher frequency operation, e.g., 2 THz.
- The response of the mixer shows numerous absorption features caused by water vapor in the ~1 cm air path between the mixer cryostat and the window of the evacuated FTS.
HEBs fabricated on thin Silicon On Insulator (SOI) lets us make waveguide chips that work from 500 GHz to 5 THz. Because we etch the chip, we can use a non-rectangular shape.

The initial run of 1.9 THz mixers has been completed. Testing should begin later this month.

Gold plated back pieces are easily mass produced and superior to conventionally machined parts using deep UV lithography. This third generation part has an integrated IF bond pad and suspended ground side bond pad.

A suspended ground tab will be connected to the mixer using a wire-bond tool.

Integrated bond pads will make assembly simpler and more robust.
Single pixel JPL Mixer

These parts are made by electro-plating of gold or copper and epoxy based KMPR-1025 resist.

Optical/SEM images of mixer device in silicon package
- 2.7 THz mixer response measured by Fourier-transform spectrometer (solid line). The sharp dips in the measured response near 2.65 THz and 2.8 THz are caused by absorption of water vapor in the short optical path between the mixer cryostat and the evacuated FTS.

- Uncorrected DSB noise temperature: $T_{\text{rec}} = 965 \text{ K @ 2.74 THz (DSB)}$

Mixer also tested with JPL solid state LO chain at 2.56 THz. Measured DSB $T_{\text{rec}} = 1350 \text{ K.}$
4-pixel mixer block has been fabricated

- A 4-pixel 1.9 THz mixer block has been fabricated
- The block has been inspected and accepted
- Verified receiver operation filling one pixel and using one pixel LO
- Clear path to a 16-pixel mixer block
LO Architectures

1. 106 GHz, 1 mW
 - 800 mW
 - 150 mW
 - 636 GHz, 10 mW
 - 1908 GHz, 0.10 mW

2. 106 GHz, ~500 mW
 - 120 K

3. 106 GHz, ~500 mW
 - x2 x3
 - x3
 - x3
 - x3
 - x3
 - x3
1.9 THz Multiplied Source

Second stage (X3)
- 2-anodes
- Membrane
- 1E17 cm$^{-3}$ doping
- Pin=~40mW

Third stage (X3)
- 2-anodes
- Thin membrane
- 3E17 cm$^{-3}$ doping
- Pin=1.5 mW
Single pixel 1.9 THz LO

Used very successfully in Herschel HIFI

However, the 100 GHz power amplifiers are bulky and very expensive
NEXT GENERATION SINGLE PIXEL LO AT 1.9 THz

POWER BUDGET:
- Power Amplifiers: 5-6 Watt
- First Stage Doubler: 0.050 Watt
- Second Stage Tripler: 0.006 Watt
- Third Stage Tripler: ~ 0 Watt

- > x25 IMPROVEMENT OVER HERSCHEL (THIS WORK)
- ENABLES MULTI-PIXEL OPERATION
 (5 µW/pixel typical need for HEB based receivers)
MODIFIED SCHEME FOR THE 4-PIXEL LO

$\begin{align*}
\text{Gain}=20-30 \text{ dB} \\
2-16 \text{ mW} \\
30-40 \text{ GHz SYNTH.} \\
\end{align*}$

$\begin{align*}
\text{HPA} \\
1 \text{ W} \\
\text{HPA} \\
1 \text{ W} \\
\end{align*}$

$\begin{align*}
\text{TRIQUINT Ka-BAND AMPLIFIERS} \\
110 \text{ GHz TRIPLEXER} \\
225 \text{ GHz DOUBLER} \\
650 \text{ GHz TRIPLEXER} \\
1.9 \text{ THz TRIPLEXER} \\
\end{align*}$

Commercial JPL Developed

$\begin{align*}
500 \text{ mW} \\
125 \text{ mW} \\
25 \text{ mW} \\
1 \text{ mW} \\
>5 \text{ uW} \\
\end{align*}$
4-Pixel 1.9THz LO

1.9-2.06 THz
633-686 GHz
211-229 GHz
105-115 GHz
F-Band 4-way power divider/combiners

1.9 THz tripler modules
225 GHz tripler module
110 GHz tripler modules
INSIDE CRYOSTAT (~77K)
OUTSIDE CRYOSTAT (~300K)

P_out > 5 uW/pixel

2-way coax power-divider
Cernex ultra low-loss 40 GHz coax cables
Ka-band 2-way power dividers
Cernex Ka-band Amplifiers
Coax-WR28 Adapters
Cernex Ka-band 1-W amplifier

Required gain >20 dB
Required bandwidth =33-40 GHz
Required P1sat=30 dBm
Fabrication completed: at Cernex (shipped to JPL)

Broadband Medium Power Amplifiers

FEATURES:
- Coverage From 0.5 to 65.0 GHz (Octave/Multi octave)
- Up to 2 Watt Output Power (@1dB Compression Point)
- Compact/Rugged Thin-Film Construction
- Economically Priced

APPLICATIONS:
- General High Power Laboratory RF Sources.
- Output Amplifiers in test Equipment (ATE & AGE)
- Driver Amplifiers in RF Distribution Intermediate Power Amplifiers (IPA) in High Power Chains.
• Avoids the use of F-band power amplifiers (not commercially available)
• Uses a Ka-band amplifier (very cheap) followed by a Schottky diode frequency tripler designed for high-power (~1 Watt) based on a proprietary novel topology invented at JPL
• Better thermal management (most of dissipated power at Ka-band)
• Record performance: 20-25% efficiency, 150-180 mW output per chip.
Ka-band 2-way power divider

Required $S_{11} < -20$ dB
Insertion loss = 0.1 dB
Fabrication completed: FirstCut
225 GHz doubler

Required output power/pixel > 20 mW
Required bandwidth: 210-229 GHz
Fabrication completed: LF10 fab run
F-band 4-way power divider

Required $S_{11} < -20$ dB

Fabrication completed: FirstCut
650 GHz tripler

Required output power/pixel > 0.8 mW
Required bandwidth: 633-686 GHz
Fabrication completed: LF10 fab run
1.9-2.1 THz tripler

Required output power/pixel > 5 uW
Required bandwidth: 1900-2060 GHz
Fabrication completed: HF4 fab run
Development of robust array receivers

- QO coupling to provide thermal break
- Thermal break could be at the first multiplier stage
- Modular design
- Control of power per pixel IS ESSENTIAL:
 - Allows both
 - optimization of LO power for each mixer and
 - feedback control of LO power to ensure good baselines
The Second Major Technical Challenge—Spectroscopic Backends for Large-N Arrays

- Progress in digital technology has made multi-GHz bandwidth autocorrelators and FFT spectrometers possible.
- Most systems have employed FPGA technology which is flexible, moderately expensive, and relatively bulky and power hungry.
- A new paradigm is to use custom (ASIC) CMOS circuits which can offer greatly improved performance with dramatically lower power consumption.
- The ability to piggyback on commercial development of CMOS technology is huge and this now applies to custom circuits in addition to FPGAs— the price barrier is rapidly disappearing.
1st Generation CMOS Spectrometer

Current Generation FPGA – based Backend

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Usage</td>
<td>20-40 W</td>
</tr>
<tr>
<td>Weight</td>
<td>1-2 Kg</td>
</tr>
<tr>
<td>Volume</td>
<td>100cm³</td>
</tr>
<tr>
<td>Channel Count</td>
<td>8192-16384</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>8-10 GS/s</td>
</tr>
<tr>
<td>Unit Cost</td>
<td>$10000</td>
</tr>
</tbody>
</table>

First Generation CMOS Spectrometer

65nm Technology

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Usage</td>
<td>0.3 W</td>
</tr>
<tr>
<td>Weight</td>
<td>1-2 g</td>
</tr>
<tr>
<td>Volume</td>
<td>1cm³</td>
</tr>
<tr>
<td>Channel Count</td>
<td>512</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>2.2 GS/s</td>
</tr>
<tr>
<td>Unit Cost</td>
<td>$690 Prototype, $0.50 Production</td>
</tr>
</tbody>
</table>
1st Generation CMOS Spectrometer

1.8 GS/s processor

7 bit ADC

Coming next: 28 nm technology 8 GHz BW; 8192 MHz
The Next Steps

• Assemble 4-pixel receiver system
• Test 1 GHz bandwidth “one-chip” digital FFT processor
• Fully characterize 4-pixel receiver system
• Verify 1.9 THz multi-flare angle feedhorn
• Test 8 GHz bandwidth 2038 channel CMOS spectral processor
• Implement 16 pixel system & test
Final Thoughts

• Short length HEB devices obtained from MSPU did not perform as expected after preliminary measurements. Additional work and better interface with MSPU is required. Due to lack of sufficient resources we did not pursue this further. However, we have been successful in getting funding for work with MgB2 devices which shows considerable promise (PI is Boris Karasik).

• Single pixel LO source at 1.9 THz with more than 50 microwatts has been demonstrated. This is at room temperature and shows a ~x10 improvement over HIFI technology. Establishes a world record.

• A biasable tripler at 1.9 THz has been demonstrated. This validates the proposed approach of using the last stage tripler to provide optimum power for each mixer pixel.

• JPL designed and fabricated HEB devices have demonstrated SOA results up to 2.7 THz.