Investigating Intermediate-Mass Star-Forming Regions with SOFIA/FORCAST

Michael J. Lundquist
University of Wyoming
Collaborators: Chip Kobulnicky, Charles Kerton, Kim Arvidsson, Michael Alexander
Talk Outline

- **Introduction**
 - High-Mass SF vs. Low-Mass SF vs. Intermediate-Mass SF

- **Sample Selection**
 - IRAS Colors
 - Morphological Classification

- **Stellar Content**
 - NIR and Optical Spectroscopy

- **37 μm with SOFIA**
 - Spectral Energy Distributions
 - YSO Classification
Introduction

- Two main star formation paradigms:
 - High Mass ($> 8 \, M_\odot$) and Low Mass ($\leq 2 \, M_\odot$)
- What about Intermediate Mass $2 \, M_\odot < M_{IM} < 8 \, M_\odot$?
- Intermediate-mass star forming regions (IM SFRs) probe this transition between low- and high- mass SFRs
- Typically isolated star forming regions ~ 1 pc in diameter

<table>
<thead>
<tr>
<th>Low-Mass</th>
<th>Star Formation</th>
<th>Intermediate-Mass</th>
<th>High-Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellar Mass Range</td>
<td>$< 2 , M_\odot$</td>
<td>$2–8 , M_\odot$</td>
<td>$> 8 , M_\odot$</td>
</tr>
<tr>
<td>MS Spectral Type</td>
<td>F–M</td>
<td>B3–A</td>
<td>O–B2</td>
</tr>
<tr>
<td>Pre-MS Lifetime</td>
<td>10–30 Myr</td>
<td>1–10 Myr</td>
<td>< 1 Myr</td>
</tr>
<tr>
<td>Parent Cloud Mass</td>
<td>$> \text{few} , M_\odot$</td>
<td>$5–10^3 , (?) , M_\odot$</td>
<td>$> 10^3 , M_\odot$</td>
</tr>
</tbody>
</table>
Sample Selection

- IRAS Color Selection
 - K02 – IM SFRs (Kerton 2002)
 - Sh-2 HII – Sharpless HII Regions
 - UCHII – Ultra Compact HII Regions
 - H II – HII Regions
 - BRN – Blue Reflection Nebulae
 - RRN – Red Reflection Nebulae
 - T Tau – T Tauri Stars
 - BG – Blue Galaxies

Adapted from Arvidsson et al. (2010)
Morphological Classification

984 Candidate IMSFRs

- Blobs/Shells 61.9%
- Filamentary 13.2%
- Starlike 4.6%
- Galaxies 20.3%

WISE

3.4 12 22 μm
Spatial Distribution of IM SFRs
IRAS Color-Color Diagram
$l = 57^\circ \ b = 0^\circ$

Spitzer GLIMPSE and MIPSGAL

4.5 8.0 24 μm
Cygnus-X

Spitzer Cygnus-X Legacy Survey

4.5 8.0 24 μm
Project Overview

- **Stellar Content**
 - Optical/Near-IR Spectroscopy
 - Near-IR CMDs and CCDs
- **Molecular Content**
 - CO associations and Kinematic Distances (GRS+Onsala 20-m)
- **Infrared Luminosities**
 - IR Spectral Energy Distributions (GLIMPSE+WISE+SOFIA+IRAS)
- **YSO Identification**
 - IR Spectral Energy Distributions (GLIMPSE+WISE+SOFIA)
Optical Spectral Classifications
(Stars in Blobs/Shells)

WIRO 2.3m Telescope
Near-IR Spectral Classifications (Starlike objects)

Courtesy of Dan Clemens - Perkins 1.8m
Importance of Mid-IR Observations

- Useful to define SEDs of the star forming regions
 - Provide lower limits on total IR luminosity
 - Constrains total stellar content powering these regions
- Useful to define SEDs of YSOs
 - Allows for better YSO classification
 - Constrains YSO models
SEDs of Star Forming Regions

Arvidsson et al. (2010) IRAS 18253-1210 with models from Draine & Li (2007)

IRAS 18253-1210

37.1 μm
YSO SEDs fit using the Robitaille et al. (2006) models.
YSO SEDs

Model Fits

Stage II or Stage III
$M = 4 - 9 \, M_\odot$

Stage I
$M = 0.5 - 1 \, M_\odot$

Stage III
$M = 6 \, M_\odot$
Summary

- IM SFRs are regions distinct from both low- and high-mass SFRs
- IM SFRs can be used to study the transition between the low- and high-mass regimes of star formation
- Spectroscopy and Near-IR CMDs have revealed the stellar content to be consistent with stars of intermediate mass
- IR spectral energy distributions from SOFIA/FORCAST are important diagnostics for understanding the physical environments of SFRs and the stars within
- SOFIA/FORCAST can be used at 37 microns to provide accurate classification of YSO evolutionary stages and provide constraints on YSO models