Far-IR cooling in massive star-forming regions: a case study of G5.89-0.39

Silvia Leurini (MPIfR, Bonn)
F. Wyrowski, R. Güsten, H. Wiesemeyer, K. Menten (MPIfR, Bonn)
A. Gusdorf, M. Gerin, F. Levrier (LERMA, Paris)
Outline

• Far-IR cooling in star-forming regions
• Herschel view and open questions
• Far-IR cooling with SOFIA/GREAT: a case study of G5.89-0.39
• Far-IR cooling in ATLASGAL selected sources: a teaser!
Far-IR cooling in star-forming regions

Cooling processes can be:

1. dust cooling \Rightarrow efficient only at high densities when the dust and the gas are thermally coupled

2. atomic and molecular lines (depending on the chemical composition of the gas)
Far-IR cooling in star-forming regions

Cooling processes can be:

1. dust cooling \Rightarrow efficient only at high densities when the dust and the gas are thermally coupled

2. atomic and molecular lines (depending on the chemical composition of the gas)

The inner regions around YSOs are peculiar:

i. FUV from the (proto)star

ii. shocks (winds, jets)

iii. but still surrounded by the dense molecular gas
Far-IR cooling in star-forming regions

The line cooling should be dominated by:

1. fine structure lines of atomic species (CII, OI, CI etc) from the PDR around the protostar and from J-shocks
- OI(63 μm) dominant coolant in PDRs and shocks
Far-IR cooling in star-forming regions

The line cooling should be dominated by:

1. fine structure lines of atomic species (CII, OI, CI etc) from the PDR around the protostar and from J-shocks
2. rotational lines of CO, H$_2$O etc (depending on T and n)
Neufled+1995

- CO: low density/low temperature
- H$_2$O: high density/high temperature
Far-IR cooling in star-forming regions

The line cooling should be dominated by:
1. fine structure lines of atomic species (CII, OI, CI etc) from the PDR around the protostar and from J-shocks
2. rotational lines of CO, H$_2$O etc (depending on T and n)

- OI, CO and H$_2$O are fundamental species to investigate the physics of the gas in star-forming regions
- If [OI]$_{63\mu m}$ is confirmed to be the dominant coolant in dense PDRs and in jets from YSOs ⇒ possible star-formation rate tracer unaffected by extinction; tracer of mass-loss rate in YSOs (Hollenbach+1985)
Herschel view...

low-mass YSOs

- total far-IR line cooling dominated by H$_2$O (25%-50%) and CO (5%-50%)
- OI (5%-30%) and it increases with time
Herschel view...

- **high-mass YSOs**
 - total far-IR line cooling dominated by CO (~74%) followed by OI (~20%)
 - H_2O contribution is negligible (~1%)
 - importance of OI increases with time

Karska+2013, 2014

<table>
<thead>
<tr>
<th>Source</th>
<th>CO (%)</th>
<th>H_2O (%)</th>
<th>OH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5.89−0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3−IRS5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFGL2591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC7538I1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGC6334−I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G34.26+0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W33A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR21(OH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W51N−e1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G327−0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
...and open questions

Emission/absorption in [OI]$_{63\mu m}$

- PACS data with \sim90 km s$^{-1}$ resolution;
- variety of profiles:
 1. pure emission
 2. pure absorption
 3. P-Cygni profiles
 4. inverse P-Cygni
...and open questions

Emission/absorption in [OI]$_{63\mu m}$

- PACS data with \sim90 km s$^{-1}$ resolution;
- variety of profiles:
 1. pure emission
 2. pure absorption
 3. P-Cygni profiles
 4. inverse P-Cygni
- no trend with evolution (HMPO, HMC, UCHII)
...and open questions

Emission/absorption in \([\text{OI}]_{63\mu m}\)

KAO and ISO pioneering study:
forefront clouds and self-absorption can contaminate the profile

(Poglitsch+1996, Liseau+2006)

⇒ spectroscopically resolved observations of the \([\text{OI}]_{63\mu m}\) line are fundamental to exploit its full potential
...and open questions

The origin of hot CO emission

van Kempen+2010

Different origin for CO emission:

i. low-/mid-\(J\): passively heated envelope

ii. high-\(J\): UV heating of cavity walls and/or C-shocks
...and open questions

The origin of hot CO emission

van Kempen+2010

Visser+2012
...and open questions

The origin of hot CO emission

Kristensen+2013

Red-shifted outflow lobe

Envelope

10^6 cm^{-3}

100 K

Disk/Infalling envelope

10^7 cm^{-3}

750 K

10^8 cm^{-3}

5000 K

Wind/UV

Jet

50-100 AU

CO in LTE: dense gas ∼100 AU of the central star

Neufeld+2012; Manoj+2013

Sub-thermal CO: shocks along outflow/cavity walls at several 100 to 1000 AU
Far-IR cooling in massive YSOs

1. Is the [OI]$_{63\mu m}$ profile contaminated by absorption and how much?
2. In high-mass star-forming regions, does [OI]$_{63\mu m}$ trace the low-velocity PDR component or a high-velocity jet?
3. Is [OI]$_{63\mu m}$ the main coolant at high-velocity? How does the contribution of the main species (OI, CII, CO, H$_2$O) change in different velocity ranges?
4. Is H$_2$O a minor contributor to the total far-IR cooling also in molecular outflows?
5. How do these results change with the evolution of the source?

Feasibility study on G5.89-0.39 followed by a survey of high-mass YSOs in the main cooling lines with SOFIA/Heschel
G5.89-0.39 hosts

❖ a UCHII from a O8 star (Feldt+2003)
❖ one of the most extreme massive outflows (Harvey & Forveille 1988)
❖ compact EHV N-S and NW-SE outflows associated with HV H$_2$ emission (Puga+2006)
SOFIA/HERSCHEL/APEX synergies

SOFIA observations
- $[\text{OI}]_{63\mu m}$ 18”×18” map
- CO(16-15) 18”×18” map
- OH triplets single pointings at 2514 GHz, 1838 GHz and 1834 GHz

HIFI observations (Gusdorf+2016, van der Tak+2013)
- Herschel HIFI H$_2$O (752 GHz, 987 GHz, 1113 GHz, 1661 GHz, 1669 GHz)

APEX data (Gusdorf+2016)
- CO(6-5)/(7-6) maps
SOFIA/HERSCHEL/APEX synergies

SOFIA observations

- $[\text{OI}]_{63\mu m}$ 18”×18” map
- CO(16-15) 18”×18” map
- OH triplets single pointings at 2514 GHz, 1838 GHz and 1834 GHz

HIFI observations (Gusdorf+2016, van der Tak+2013)

- Herschel HIFI H$_2$O (752 GHz, 987 GHz, 1113 GHz, 1661 GHz, 1669 GHz)

APEX data (Gusdorf+2016)

- CO(6-5)/(7-6) maps
[OⅠ] in G5.89-0.39

before SOFIA...

✈ pure Gaussian profile no sign of absorption

Karska+2014

- $\Delta v \sim 90$ km/s
- beam $\sim 9.4''$
[OI] in G5.89-0.39

…and with SOFIA

Leurini+2015

- Deep absorptions from the source and from different line of sight clouds;
- Emission completely dominated by the HV wings (| $v_{\text{max}} - v_{\text{lsr}}$ | \approx 70 km s$^{-1}$)
[OI] distribution in G5.89-0.39

- HV emission along the north-south as CO(6-5)
- HV emission from the inner region of EHV outflows
- HV emission more compact (<6''.6 beam) than EHV CO outflow (~12'')

Leurini+2015
The major coolants

$[\text{OI}]_{63\mu m}$ is characterised by emission at HV in the same velocity range as mid- and high-J CO, H$_2$O, OH;
Far-IR gas cooling of high-mass YSOs is dominated by CO (44%), and to a smaller extent by [OI] (42%). H$_2$O and OH are less than 1%.

In contrast, for low-mass YSOs, the H$_2$O, CO, and [O i] contributions are comparable.

<table>
<thead>
<tr>
<th>Velocity range total profile</th>
<th>L_{CO}</th>
<th>L_{OH}</th>
<th>$L_{\text{H}_2\text{O}}$</th>
<th>$L_{\text{OI} 63\mu\text{m}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_{CO}</td>
<td>L_{OH}</td>
<td>$L_{\text{H}_2\text{O}}$</td>
<td>$L_{\text{OI} 63\mu\text{m}}$</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>0.5</td>
<td>0.8</td>
<td>3.7</td>
</tr>
</tbody>
</table>
I. In the LV wings, [OI] is the main contributor (5.3/1.2 \(L_\odot \)) to the line \(L_{\text{FIR}} \) followed by CO.

II. \(\text{H}_2\text{O} \) is not a significant contributor even at HV.

The line luminosity of the [OI] line at high velocities can be used as a tracer of the mass-loss rate of the jet since [OI] is the main coolant of the gas in this velocity regime.
Hot CO emission

~2/3 of the CO(16-15) emission is due to outflows
1/3 hot quiescent gas

<table>
<thead>
<tr>
<th>line</th>
<th>W_{tot} (K km s$^{-1}$)</th>
<th>W_{blue} (K km s$^{-1}$)</th>
<th>$W_{\text{blue}}/W_{\text{tot}}$ (%)</th>
<th>W_{amb} (K km s$^{-1}$)</th>
<th>$W_{\text{amb}}/W_{\text{tot}}$ (%)</th>
<th>W_{red} (K km s$^{-1}$)</th>
<th>$W_{\text{red}}/W_{\text{tot}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (3–2)</td>
<td>1334</td>
<td>630</td>
<td>47.2</td>
<td>387</td>
<td>29.0</td>
<td>317</td>
<td>23.8</td>
</tr>
<tr>
<td>CO (4–3)</td>
<td>1512</td>
<td>643</td>
<td>42.5</td>
<td>469</td>
<td>31.0</td>
<td>401</td>
<td>26.5</td>
</tr>
<tr>
<td>CO (6–5)</td>
<td>1969</td>
<td>647</td>
<td>32.9</td>
<td>674</td>
<td>34.2</td>
<td>648</td>
<td>32.9</td>
</tr>
<tr>
<td>CO (7–6)</td>
<td>2003</td>
<td>650</td>
<td>32.5</td>
<td>692</td>
<td>34.3</td>
<td>661</td>
<td>33.0</td>
</tr>
<tr>
<td>CO (16–15)</td>
<td>396</td>
<td>119</td>
<td>30.1</td>
<td>127</td>
<td>32.1</td>
<td>150</td>
<td>37.9</td>
</tr>
</tbody>
</table>
Line cooling in ATLASGAL selected sources

How typical is G5.89-0.39? how does the line cooling change with evolution in the process of massive SF?

1. OI:
 i. how severe is absorptions in other sources?
 ii. does the atomic jet become important with time and is the jet purely mostly molecular in early evolutionary phases? (Nisini +2015)

2. CO:
 i. what is the origin of hot CO?

3. H$_2$O:
 i. is H$_2$O an important coolant at least in the high-velocity outflow gas?
The ATLASGAL TOP100:
a flux-limited sample of 100 massive star-forming clumps with a large range of evolutionary stages and luminosities

Giannetti+2014; König+subm.
The ATLASGAL TOP100:

a flux-limited sample of 100 massive star-forming clumps with a large range of evolutionary stages and luminosities

- SOFIA/GREAT follow-up in high-J CO, OI, OH.
 Ongoing program 25 sources accepted, 17 done in CO, 5 in OI, 7 in OI

- Herschel/HIFI in three water line: ~100 sources
SOFIA CO observations
(preliminary results)

UCHII

24 µm bright

24 µm dark

CO(11-10)

CO(16-15)
SOFIA CO observations
(preliminary results)

- high-J CO is detected in all sources; however, the highest J CO line observed is not detected in the earliest phases;
- the luminosity of the lines increases with evolution;
- lines are broad (>5-7 kms$^{-1}$);
- in several cases non Gaussian wings
- the contribution of the wings (red+blue) varies from 20% to 76% of the total intensity
SOFIA/APEX/Herschel synergies

G351.77-0.54

Leurini+2009, +2014
SOFIA/APEX/Herschel synergies

G351.77-0.54

Leurini+2009, +2014

High velocity high-J CO and water emission clearly associated with molecular outflow

Modelling of the full CO ladder needed!
Conclusions

✦ High spectral resolution is needed to understand the emission of OI, CO, H$_2$O and their origin

✦ G5.89-0.39:

✧ [OI]$_{63\mu m}$ is heavily contaminated by absorption at low velocities;

✧ [OI] is the major coolant at HV \Rightarrow mass loss-rates!

✧ CO is the major coolant at low-velocity

✧ H$_2$O is a minor coolant in all velocity regimes

✦ ATLASGAL selected massive clumps: stay tuned!