ACTIVE GALACTIC NUCLEI:
INVESTIGATING THE DUSTY TORUS USING SOFIA

ENRIQUE LOPEZ RODRIGUEZ
Visiting Post-Doctoral Scientist at SOFIA
Affiliated Research Fellow at UT Austin

SOFIA Tele-talk October 26, 2016

Collaborators:
Almudena Alonso-Herrero (CSIC, Spain)
Tanio Diaz-Santos (Universidad Diego Portales, Chile)
Lindsay Fuller (UT San Antonio, TX, USA)
Ismael Garcia-Bernete (IAC, Spain)
Omaira Gonzalez-Martin (UNAM-Morelia, Mexico)
Kohei Ichikawa (NAOJ-Mitaka, Japan)
Nancy Levenson (JWST)
Mariela Martinez-Paredes (UNAM-Morelia, Mexico)
Chris Packham (UT San Antonio, TX, USA)
James Radomski (SOFIA)
Cristina Ramos Almeida (IAC, Spain)
INCLUDING 30–40 μm PHOTOMETRY FROM SOFIA:

1) THE TURNOVER OF THE TORUS EMISSION DOES NOT OCCUR <31.5 μm
2) EXTENDED EMISSION FROM NARROW-LINE REGION IS DETECTED AT 30–40 μm
3) THE TORUS RADIAL EXTENT IS REDUCED, RANGING FROM 1 pc TO 8.4 pc

Fuller et al. (2016)
ACTIVE GALACTIC NUCLEI: THE DUSTY TORUS

Black Hole & Accretion Disk (central engine)

Clumps

Type 1

The central engine is directly viewed

Type 2

The central engine is obscured by the torus
THE DUSTY TORUS OF AGN: TORUS MORPHOLOGY

Credit: R. Nikutta
THE DUSTY TORUS OF AGN: TORUS EMISSION

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b)

Credit: R. Nikutta
CLUMPY TORUS: CHARACTERISTICS

- Optically and geometrically thick, clumpy and dusty torus
- Scales of few parsecs
- We need to isolate the torus from:
 - Host galaxy, diffuse extended dust emission, star formation
CLUMPY TORUS: THE IMPORTANCE OF HIGH-SPATIAL RESOLUTION

- Optically and geometrically thick, clumpy and dusty torus
- Scales of few parsecs
- We need to isolate the torus from:
 - Host galaxy, diffuse extended dust emission, star formation
- The isolated emission from the nucleus using 10-m class telescopes is well reproduced using clumpy torus models.

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b)
- Lack of spatial resolution observations <10" in the 30-40 μm wavelength range.
- This is important because the expected peak emission of the torus is in that wavelength range.

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b)
Survey of Seyfert galaxies to characterize the torus emission
SOFIA Cycle 2 and 4 (PI: Lopez-Rodriguez)

FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution for the current suite of telescopes in the 30–40 μm
FORCAST 31.5 μm OBSERVATIONS: FULL SAMPLE USING CYCLE 2 DATA
SOFIA vs SPITZER: THE IMPORTANCE OF THE SPATIAL RESOLUTION
The torus emission was estimated using:
PSF-scaling

The goal is to extract the point-like source from the core and have a residual that ‘emulate’ the galaxy emission

Over subtraction of the PSF

Optimal subtraction of the PSF
The torus emission was estimated using:
Spectral decomposition

The goal is to perform a decomposition of the several emitting components in the core of AGN.

Results:
SOFIA/FORCAST photometry using PSF-scaling (black dot) agrees with the AGN component (red) using the spectral decomposition method.
The torus emission was estimated using:

1) PSF-scaling
2) Spectral decomposition

both methodologies agree on the subtraction of

a) Extended emission from the NLR and/or host galaxy
b) Star formation regions
CLUMPY TORUS MODEL: SED FITTING WITHOUT AND WITH SOFIA

Torus models using CLUMPY (Nenkova et al. 2002, 2008a,b)
The turn-over of the torus emission does not occur at wavelengths <31.5 μm
GLOBAL POSTERIOR DISTRIBUTIONS: KLD TEST

Torus angular width

Torus extension (Y)

Number of clouds in the equatorial plane

radial distribution power-law

optical depth per single cloud

Torus extent is smaller when 31.5 μm data is taken into account.
SUMMARY

SOFIA has proven the potential to advance our knowledge on the AGN torus

We found:

1) THE TORUS TURNOVER DOES NOT OCCUR <31.5 μm
2) EXTENDED EMISSION RELATED WITH THE NARROW LINE REGION
3) THE TORUS EXTENT IS SHORTER THAN WE THOUGHT
4) SO FAR, SOFIA IS ABLE TO OBSERVE DISTANCE GALAXIES UP TO 117 Mpc (MORE TO COME!)

Work currently in progress:

1) SOFIA IS STILL OBSERVING MORE AGN AT 31.5 AND 37.0 μm, WHICH WILL IMPROVE THE STATISTIC ANALYSIS
2) DETAILED STUDY OF THE EXTENDED EMISSION, i.e. CHARACTERISTIC TEMPERATURE AND SPATIAL COMPARISON AT OTHER WAVELENGTHS
Thank you