Detection of OD with SOFIA

SOFIA Community Tele-Talk, December 2013

Dr. Bérengère Parise
School of Physics and Astronomy, Cardiff University, Cardiff, UK
MPIfR, Bonn, Germany

in collaboration with F. Du, F.C. Liu, A. Belloche, R. Güsten, K. Menten and the SOFIA/GREAT team
Water formation in the ISM?

Water formation in cold gas:

\[\text{O} + \text{H}_3^+ \rightarrow \text{OH}^+ \]
\[\text{O}^+ + \text{H}_2 \rightarrow \text{OH}^+ \]
\[\text{OH}^+ + \text{H}_2 \rightarrow \text{H}_2\text{O}^+ \]
\[\text{H}_2\text{O}^+ + \text{H}_2 \rightarrow \text{H}_3\text{O}^+ \]
\[\text{H}_3\text{O}^+ + e^- \rightarrow \text{H}_2\text{O} \]

Water formation in hot gas:

\[\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H} \]

Water formation on dust surfaces:

Cuppen et al. 2010
First detection of H$_2$O$_2$ in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)
Water formation constrained in one particular environment

First detection of H\textsubscript{2}O\textsubscript{2} in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Grain surface chemistry formation of water (Cuppen et al. 2010)
First detection of H_2O_2 in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Astrochemical modeling of the abundance of H_2O_2, O_2, and other molecules predicted the abundance and detectability of a new molecule: HO_2 (Du, Parise & Bergman, 2012)

Grain surface chemistry formation of water (Cuppen et al. 2010)
Water formation constrained in one particular environment

First detection of H$_2$O$_2$ in the interstellar medium with the APEX telescope, towards Oph A (Bergman, Parise, Liseau et al. 2011)

Relevance to the chemistry of water.

Astrochemical modeling of the abundance of H$_2$O$_2$, O$_2$, and other molecules predicted the abundance and detectability of a new molecule: HO$_2$ (Du, Parise & Bergman, 2012)

First detection of HO$_2$ with the APEX and IRAM telescopes and validation of the prediction of the astrochemical model (Parise, Bergman & Du 2012)

In this environment (~20K), the O$_2$ route to water is dominant

Grain surface chemistry formation of water (Cuppen et al. 2010)
Follow-up search for H$_2$O$_2$ towards a sample of sources

Parise et al., Faraday Discussion 168, subm.

- Using the APEX telescope, search for H$_2$O$_2$ towards a sample of 10 sources, including low-mass protostars, IRDCs, massive YSOs, ...

- No detection obtained, with upper limits on H$_2$O$_2$ abundance (much) lower than abundance in Oph A

- Similarity with the O$_2$ search

- Oph A seems to be a unique example of a source where conditions are about right (~ 20-30 K) for the O$_2$ route to be dominant in the formation of water. This particularity may result from external heating by the “S1” source.

- The abundance of H$_2$O$_2$ may thus be used to constrain the physical conditions during the source evolution.

7 - 9 April 2014, Leiden, The Netherlands
Call for poster abstracts - deadline 27 January 2014
Other approach to constrain water formation: isotopic study

Measuring the deuterium fractionation of water

<table>
<thead>
<tr>
<th>Source</th>
<th>HDO/H₂O</th>
<th>HDCO/H₂CO</th>
<th>CH₂DOH/CH₃OH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner</td>
<td>outer (3σ)</td>
<td>–</td>
</tr>
<tr>
<td>IRAS2A</td>
<td>≥ 0.01</td>
<td>0.07 ± 0.11</td>
<td>0.17 ± 0.12</td>
</tr>
<tr>
<td>IRAS 16293</td>
<td>0.03</td>
<td>≤ 0.002</td>
<td>0.15 ± 0.07</td>
</tr>
<tr>
<td>Orion KL</td>
<td>0.02</td>
<td>0.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>

- The deuterium content of water has been observed to be low compared to that of other molecules also formed on dust surfaces (e.g. CH₃OH) for over a decade now [e.g. Parise et al. 2005]

- The number of observational studies deriving HDO/H₂O has been booming with the Herschel Space Observatory, and all confirm the lower deuterium fractionation of water [e.g. Liu et al. 2011, Coutens et al. 2013]

- The HDO/H₂O directly measured in ices is also low (< 1%, Parise et al. 2003, Dartois et al. 2003)

- Apparent problem for astrochemical models, but new generation of models propose different explanations (Cazaux et al. 2011, Taquet et al. 2013, Du et al. in prep.)

- Add more observational constraints: search for OD
Search for OD in the ISM

Previous attempts:

- Allen et al. 1974 at 310 MHz towards Galactic Center
- OD recently detected towards comet C/2002 T7 (LINEAR) via coaddition of 30 lines of UV fluorescence spectrum (Hutsemekers et al. 2008) OD/OH ~ 3.5×10^{-4}, result of photodissociation of HDO and H$_2$O
- Our search: ground-state transition with SOFIA
Target: IRAS16293-2422, a low-mass protostar in the ρ Oph complex, where high levels of deuterium fractionation have been observed (up to the detection of CD$_3$OH, Parise et al. 2004)

OD ground state transition at 1391.5 GHz
Column density of OD?

<table>
<thead>
<tr>
<th>T_{ex} (K)</th>
<th>N_{OD} (cm$^{-2}$)</th>
<th>N_{HDO} (cm$^{-2}$)</th>
<th>OD/HDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>$(3.5 \pm 1.5) \times 10^{13}$</td>
<td>$(6.0 \pm 1.5) \times 10^{11}$</td>
<td>60 ± 30</td>
</tr>
<tr>
<td>5.0</td>
<td>$(5.0 \pm 2.0) \times 10^{13}$</td>
<td>$(1.2 \pm 0.3) \times 10^{12}$</td>
<td>45 ± 20</td>
</tr>
<tr>
<td>10.0</td>
<td>$(1.0 \pm 0.3) \times 10^{14}$</td>
<td>$(4.0 \pm 1.0) \times 10^{12}$</td>
<td>27 ± 10</td>
</tr>
</tbody>
</table>

OD/HDO ~ 17 - 90

<table>
<thead>
<tr>
<th>Molecular line</th>
<th>Fit type</th>
<th>$\int T_{mb} dv$ (K km s$^{-1}$)</th>
<th>FWHM (km s$^{-1}$)</th>
<th>v_{lsr} (km s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDO $1_{11} - 0_{00}$</td>
<td>two-Gauss</td>
<td>+4.4 ± 0.6</td>
<td>5.9 ± 1.0</td>
<td>4.5 ± 0.3</td>
</tr>
<tr>
<td>OD $5/2-3/2, -1+1$</td>
<td>one-Gauss</td>
<td>-4.1 ± 0.5</td>
<td>2.9 ± 0.3</td>
<td>-</td>
</tr>
<tr>
<td>OD $5/2-3/2, -1+1$</td>
<td>hfs</td>
<td>-</td>
<td>1.3 ± 0.6</td>
<td>4.2 ± 0.2</td>
</tr>
</tbody>
</table>
Preliminary astrochemical modelling

OH/H₂O ratio predicted by the model from Du, Parise & Bergman (2012)
More detailed astrochemical modelling including deuterium

OD/HDO >> OH/H$_2$O

because there are more fractionation routes for OH than for H$_2$O

(D + OH \rightarrow OD + H)

Du et al. in prep
Perspectives

• Derive directly the OD/OH ratio observationally
 - Observation of 18OH with SOFIA (Cycle I proposal rated A, not observed)

• Observation of OD towards other star-forming regions (tracing other physical conditions and history)
 - OD detected towards SgrB2 (Parise et al. in prep)
 + Cycle I accepted SOFIA proposal by Menten et al.