High spectral and spatial resolution observations of the PDR emission in the NGC2023 reflection nebula with SOFIA and Apex

Göran Sandell (SOFIA-USRA)
Collaborators:
B. Mookerjea (Tata institute)
R. Güsten, M. Requena-Torres & D. Riquelme (MPIfR)
Outline

• Brief summary of NGC2023 (and pretty pictures)
• Introduction to PDRs – no, already covered by Berne
• Data sets
• [CII] emission dominated by PDR
• [13CII] emission
• The hot molecular shell, also PDR dominated
• Modeling
• Summary & Conclusions
NGC2023

• One of the best studied reflection nebulae in the whole sky
• Distance 350 pc (300 pc) embedded in the L1630 dark cloud (Orion)
• Illuminated by the B2 V star HD37903
• This is where Kris Sellgren first confirmed the existence of PAHs
• Used as a test bed for most PDR models (going back to Black & van Dishoeck 1987)
NGC 2023 and the Horsehead as seen by VISTA
Spitzer IRAC and MIPS color composite (4.5, 8 & 24 μm)
Closeup view of NGC2023
Observational data

• SOFIA/GREAT:
 – Maps of [CII] (and 13CII)) and CO(11-10) covering almost the whole reflection nebula

• APEX
 – Slightly smaller maps in CO(3-2), 13CO(3-2), CO(4-3), CO(6-5) & CO(7-6)

• Herschel/HIFI
 – Deep [CII] integration towards HD37903, the B2e star illuminating the nebula, showing two of the 13CII hyperfine lines

• Herschel/PACS
 – 70/100/160 μm images of the whole reflection nebula
[CII] emission is PDR (i.e. FUV) dominated

Integrated [CII] emission (color image). Contours: 8μm PAH emission (left), 70 μm dust emission (middle), 2.1 μm H₂ (right) – all three trace PDR emission. Therefore [CII] also PDR dominated
CO maps overlaid on [CII]
The surrounding cloud

• The surrounding cloud dominates the CO emission at low J CO transitions (13CO traces the column density, 12CO temperature
• The cloud contributes to the CO emission even at CO 6-5, higher J transitions only see the hot PDR emission
• Dense cloud ridge in the SE, cloud more diffuse to the NW; cloud emission more red-shifted in the N & NW.
• Radex modeling of low J CO (3-2, 4-3) and 13CO suggest that the cloud has a kinetic temperature of 24 – 47 K, and densities of (2-3) x 10^6 cm$^{-3}$.
13CO 3-2 channel maps
12CO 3-2 channel maps
[CII] channel maps
[\[^{13}\text{CII}\]]

[CII] somewhat optically thick, \(\tau \sim 1 \) - 2. [13CII] F=2-1 not seen in individual spectra, but visible in the average of all spectra in the cube.

Below is an average of all spectra in the SW quadrant with [CII] brighter than 35 K. To the right is the HIFI spectrum.
CO(11-10) overlaid on [CII]

The ellipsoidal (egg-shaped) CII region is surrounded by a thin hot molecular shell, seen clearly in CO(11-10) (black contours) in the SW quadrant of the map, where the CII region expands into the dense molecular cloud ridge. The CO lines are very narrow (0.5 km/s), where we see the shell tangentially. The temperature of the gas is ~ 90 K; density >~ 10^6 cm$^{-3}$
Line profiles

- [CII] and CO lines often double peaked. This is not due to self-absorption, but because we see the front and the back side of the shell. The centroid of [CII] emission is offset by a few tenth of km/s to blue or red depending on whether the emission comes from the front or the backside of the shell.
- The expansion velocity in the SW quadrant is ~ 0.5 km/s, in the NE ~ 1 km/s, consistent with the CII region extending twice as far in the Ne (lower density) than SW.
- [CII] shows strong blue and sometimes red-shifted wings. This is due to photoevaporation flows from the PDR and most of the PDR emission comes from the backside.
Simple cartoon of the NGC2023 PDRs and the L1630 cloud
Reality more complicated ridges and ‘filaments’

$H_2S(1)$ map from Fields et al (1998), 0.8” resolution

Triangle
Seahorse
IR cross
SR Southern ridge
Modeling

• We use RADEX (non-LTE code, van der Tak et al. 2007) to explore the physical conditions of the hot molecular shell using ratio maps of different CO transitions

• We model the PDR using the model by Kaufman et al. (1999) (see also Tielens & Hollenbach 1985) in selected position, where we smoothed the spectra to the beam width of [CII]
Radex analysis of the hot molecular shell

(a) (6-5)/(4-3)
(b) (11-10)/7-6
(c) (11-10)/(6-5)
(d) (11-10)/(4-3)

Ratios insensitive to column density.
Density $\geq 10^6$ cm$^{-3}$, $T_{\text{kin}} \geq 90$ K
PDR modeling

• Modeling [CII] trickier than for ex. Fluorescent H$_2$ (many lines – all originate in the PDR)
• Low J CO lines dominated by the cold surrounding cloud and may originate in regions which have no knowledge about the PDR. Where they overlap with the ODR we have strong self-absorption
• Only three CO lines are PDR dominated 6-5, 7-6 and 11-10.
A few spectra

- [CII]
- CO(11–10)*4
- CO(7–6)
- CO(6–5)
- CO(4–3)*1.5

Graphs showing different spectral lines with velocity and intensity.
Modeling results
Modeling results

• Predict FUV field quite well, appears to underestimate gas densities – typically between 10^4 – 10^5 cm$^{-3}$, while our RADEX modeling suggest $>10^6$ cm$^{-3}$

• Our results for the SR lie between what Draine & Bertoldi (2000) ($G = 5000$, $n = 5 \times 10^4$ cm$^{-3}$), and Sheffer et al (2011) ($G = 10^4$, $n = 2 \times 10^5$ cm$^{-3}$), i.e. not too bad.
Summary & Conclusions

- High spatial and spectral images of [CII] (\(^{13}\text{CII}\)) and CO (both low and high J) gives us a unique insight to the morphology, kinematics and physical conditions of the CII region surrounding NGC 2023
 - RADEX modeling shows that the CO(3-2) and (4-3) emission primarily comes from the surrounding molecular cloud, which has a temperature of 24 -27 K and densities of \((2 - 3) \times 10^6 \text{ cm}^{-3}\). The higher J CO lines come from the hotter \((\geq 90 \text{ K})\) and denser \((3-7) \times 10^6 \text{ cm}^{-3}\) molecular shell surrounding the [CII] region
 - PDR modeling of selected positions show that we need an FUV flux of \(60 – 3 \times 10^4 \text{ G}_0\) (Habing units) and densities of \(10^3\) to a few times \(10^4 \text{ cm}^{-3}\) to match our observed line intensities.
 - However, in these models we ignore the clumpiness, including any beam filling, probably optical depth effects as well