FIELDMAPS
Filaments Extremely Long and Dark: a Magnetic Polarization Survey: A SOFIA Legacy Program

Ian Stephens
Worcester State University

Image Credit: Spitzer GLIMPSE+MIPGSAL
Collaborators

IAN W. STEPHENS,1,2 PHILIP C. MYERS,2 CATHERINE ZUCKER,3,2,* JAMES M. JACKSON,4 B-G ANDERSSON,4
ROWAN SMITH,5 ARCHANA SOAM,4 CARA BATTERSBY,6 PATRICIO SANHUEZA,7,8 TAYLOR HOGGE,9 HOWARD A. SMITH,2
GILES NOVAK,10 SARAH SADAVOV,11 THUSHARA PILLAI,9 ZHI-YUN LI,12 LESLIE W. LOONEY,13 KOJI SUGITANI,14
SIMON COUDÉ,4 ANDRÉS GUZMÁN,7 ALYSSA GOODMAN,2 TAKAYOSHI KUSUNE,15 FÁBIO P. SANTOS,16 LEAH ZUCKERMAN,2
AND FRANKIE ENCALADA13

1Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA 01602, USA istephens@worcester.edu
2Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
4SOFIA Science Center, USRA, NASA Ames Research Center, Moffett Field CA 94045, USA
5Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
6University of Connecticut, Department of Physics, 196A Auditorium Road, Unit 3046, Storrs, CT 06269, USA
7National Astronomical Observatory of Japan, National Institute of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
8Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
9Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston MA 02215, USA
10Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
11Department of Physics, Engineering and Astronomy, Queen’s University, 64 Bader Lane, Kingston, ON, K7L 3N6, Canada
12Astronomy Department, University of Virginia, Charlottesville, VA 22904, USA
13Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801, USA
14Graduate School of Science, Nagoya City University, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
15Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
16Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
Stars Form in Filaments

Spitzer Observations (GLIMPSE+MIPSGAL)
Star-forming region seen in extinction
(light from background is blocked)

Star-forming region seen in emission
(far-infrared light directly from star-forming sites)

Spitzer/GLIMPSE/MIPSGAL, Herschel/HiGal, Ke Wang (ESO)
Herschel Observations of Orion

Credit: ESA/Herschel/PACS, SPIRE/N. Schneider, Ph. André, V. Könyves (CEA Saclay, France) for the 'Gould Belt survey' Key Programme
Large extinction filaments tracing spiral arms

Credit: NASA, ESA, S. Beckwith (STScI) and the Hubble Heritage Team (STScI/AURA)
The Snake

Features also found in Milky Way

“The Snake”

Spitzer/GLIMPSE/MIPSGAL, Herschel/HiGal, Ke Wang (ESO)
“Nessie” Jackson et al. (2010)
(e.g., Goodman et al. 2014; Zucker et al. 2015, 2018)
• “Bones of the Milky Way”
• Bones well observed
 ➢ Dust continuum (Herschel, ground-based)
 ➢ Molecular Lines
• Most parameters well constrained:
 ➢ lengths, widths, aspect ratios, velocity information, masses, column densities, dust temperatures, Galactic altitudes, kinematic separation from arms in l − v space, and distances (e.g., Zucker et al. 2018)
 ➢ notably not the magnetic field
 o star formation rate, flow direction, shape
 o collapse time-scale, fragmentation
• Original expectation: Fields will be perpendicular to the bones!
• Planck XXXV (didn’t resolve filaments!)

Gray: Observations
Blue: Weak Fields
Green: Equipartion with Turbulence (Alfvenic)
Red: Strong Fields

Planck Collaboration XXXV (2016)
• Original expectation: Fields will be perpendicular to the bones!
• Gravitational accretion flow of bones perpendicular to bones

Gomez et al. (2018)
• Nevertheless, since we are resolving bones, we may see something else!
• Flows through the bones

Chen & Ostriker et al. (2014)
Spheroidal grains align with short axis perpendicular to B-field.

\[\mathbf{E} \perp \mathbf{B} \]

Lazarian (2007)
Spitzer/GLIMPSE/MIPSGAL, Herschel/HiGal, Ke Wang, European Southern Observatory
First Try!
First Try

• Quite perpendicular
• Is this a ubiquitous feature?

• We teach our Astronomy 101 students that most stars form due to the compression in the spiral potential. Fields likely play a role.

• It would be beneficial to survey the entirety of many bones
Major Goals:

- **Role of magnetic fields in Bones**
 - Critical for collapse?

- **Whether magnetic fields vary for bones in the arm vs interarm regions**
 - Compression in spiral potential vs sheared and stretched

- **Overall morphology**
 - (e.g., perpendicular fields vs fields guiding flow through the bones)

- **Setup a Legacy data product** that can used for studying how star-forming gas collects in the magnetized spiral potential
Above shows NMC. OTF actual
FIELDMAPS

Novel:
Magnetic fields of bones have not been significantly studied, but are the largest, dense filamentary structures in the Galaxy.

The bones are potentially the best way to study how star-forming gas collapses in the magnetized Spiral potential for all galaxies. The key missing component of the bone analysis it the magnetic field.

This is a pioneering phase.

We expected all perpendicular
Filament 4

The image shows a map of the Filament 4 region in Galactic coordinates. The map uses different color intensities to represent variations in the measured parameter, with a color bar indicating the scale from 0.8 to 2.0 (likely in units of cm$^{-2}$). The map is focused on a specific area in Galactic longitude and latitude.
First Try

• Quite perpendicular
• Is this a ubiquitous feature?
 ➢ Additional tries say “Nope!”
 ➢ But maybe at the highest densities
Line Interval Convolutions (LICs)

Credit: Leah Zuckerman
Line Interval Convolutions (LICs)

Credit: Leah Zuckerman
- G47 in ApJL
- Stephens et al. (2022)

- **Green** and **Blue** circles: Locations of Young Stellar Objects (Zhang et al. 2019)
Moving Box Analysis

- Slide a moving box down the spine of G47 (can change angle)
- Use the DCF technique to estimate B-field and mass-to-magnetic flux ratio in each box

Stephens et al. (2022)
Moving Box Analysis

• Critical Ratio

\[\lambda = \frac{(M/\Phi)_{\text{observed}}}{(M/\Phi)_{\text{crit}}} \]

(Crutcher et al. 2004)

• \(\lambda < 1 \): Magnetic fields can support against gravitational collapse
• \(\lambda > 1 \): Magnetic fields cannot support against collapse
Moving Box Analysis

Fields strong enough to support against collapse along a lot of the bone. However, not necessarily toward areas with recent star formation.
- Higher densities are more likely to collapse
- Correlated with locations of known YSOs
Spherical Flux Freezing (SFF) model

Four reasonable assumptions:
• Background density
• Background B-field
• Collapse to a Plummer spheroid
• Flux-freezing

Straightforward to calculate the magnetic field throughout entire spheroid
Myers et al. (2018, 2020)

Also can do forward-modeling

Example of sphere above. Can be applied to any spheroid (including inclined) as well as multiple combined
Spherical Flux Freezing (SFF) model

Also can do forward-modeling

• Fit the spheroids column density maps with Plummer spheroids to determine field morphology
• Use DCF technique to calculate the field strength in area

• This gives you the magnetic field strength everywhere

Myers et al. (2020)
• G47 in ApJL
• Stephens et al. (2022)
Spherical Flux Freezing (SFF) model

Applied to G47 using two spheroids

Peak field strength: 108 µG
Average field strength: 56 µG

Mass-to-magnetic flux parameter: 1.7 (critical for collapse)

Stephens et al. (2022)
Quick summary of G47 Results

• Magnetic fields are structured but not ubiquitously perpendicular
• Field strengths of ~20 µG to 100 µG
• Fields are strong enough to support bone, except in locations of active star formation (highest column densities)
 • Potentially unstable to gravitational collapse at smaller scales
Spherical Flux Freezing (SFF) model

Proof of Concept: Filament 5

FIELDMAPS project: Filament 5 SOFIA polarization, N column density, B field lines

N contours
B pol segments

$SFF B$ lines on
N contours, B pol segments

$SFF B$ model lines

LIC rendering
of B pol on N gray scale

PCM 19Oct21
Histograms of Relative Orientations (HROs)

Fields Parallel w/ Bone

Fields Perpendicular w/ Bone

Credit: Leah Zuckerman
Histories of Relative Orientations (HROs)

Fields Parallel w/ Bone

Fields Perpendicular w/ Bone

High columns: Perpendicular with Bones. Otherwise, more random

Credit:
Leah Zuckerman
Simulations by team members
Rowan Smith et al. (2014, 2020)

Observational comparisons
Zucker et al. (2019)

Initial simulations adding magnetic fields
Will compare using POLARIS code
Near-IR: Sugitani et al. (in prep) HAWC+ 214 µm: Stephens et al.
Red and Yellow: SOFIA HAWC+
White: Near-IR
Sugitani et al. (in prep)
Perhaps the best map: Filament 8. Not yet observed
FIELDMAPS: Filaments Extremely Long and Dark: a MAgnetic Polarization Survey
FIELDMAPS’ Legacy

• Galaxy MHD Simulations have just reached the point where they achieve resolutions of SOFIA (e.g., Dobbs et al. 2016)

• Will be the best high-resolution data for understanding the role of magnetic fields in collecting star-forming gas in the spiral potential

• Ancillary data to be published with program:
 • Bone parameters from Zucker et al. (2015, 2018)
 • Near-IR polarization observations of all bones lead by Koji Sugitani
 • Molecular line data, e.g., NH$_3$ from the RAMPS survey (Hogge et al. 2018; in prep)
 • Spitzer and Herschel data (including column density and temperature maps)
 • YSO locations
Summary

• FIELDMAPS is probing how star-forming gas collapses into the magnetized spiral potential via observing the bones. We are look at the largest known filaments in the Galaxy. The key missing component is the B-field.

• Contrary to expectations, fields are not always perpendicular

• Fields appear to be significantly strong enough to provide support against collapse

• We have shown capability of measuring magnetic field strengths across the Bones and whether they are unstable to collapse

• We have upcoming simulations to compare with