SOFIA Observing and Flight Planning

Useful Information for Proposing and Planning SOFIA Observations

Randolf Klein (USRA)
SOFIA Science Flight Planner
Airborne Observing

What is special about airborne observing?

• The observatory is moving while observing. Local sidereal time loses its meaning. Sources rise and set faster or slower. The elevation where a certain target culminates can vary.

• The targets dictate the aircraft heading. The observing plan translates into a flight plan and the observing plan has to be prepared so that the flight plan can be flown and starts and ends at the (same) airport.

• You can help us flight planners to your own benefit.
SOFIA’s Telescope

Before you can propose observations, you need to know what the telescope can do:

• The telescope door is on the port side of SOFIA. Thus, the azimuth dictates aircraft heading (~AZ+90°).
• Telescope door elevation range: 24.15° – 57°
• The telescope can exceed the door elevation range by ~5° without getting vignetted (depends on instrument).
• Due to variability of aircraft pitch and roll angle and their effect on available elevation, observations should not exceed the door elevation range more than ~3°.

For planning purposes:

⇒ 20° < useful elevation range < 60°
Flight Planning

Flight Planning starts with you, the observer!
You need to provide targets that are observable.

- Target observability can be evaluated via the Visibility Tool
 https://dcs.sofia.usra.edu/ ➔ Visibility Tool (publically available)
 - It calculates **elevation** and **aircraft heading** (~AZ+90°) for a given target, location, and date and plots it over 24 hours.
 - Default location is Palmdale Airport (N34°38’, W118°05’). You can select from a few airports or enter coordinates freely.
 - The proposal call allows sources with DEC>-36° for flights from Palmdale, i.e. SOFIA will routinely fly from there to latitudes south of N30°.
Flight Planning

Since SOFIA has to fly back to Palmdale usually, **targets need to be well distributed over the sky**. Flight Planners will be in need of targets **opposite in azimuth of popular regions** like the Galactic Center in summer or Orion in winter. Give us good choices.

A good source distribution on the sky does not help your proposal to get approved. But once approved, sources culminating in the north tend to have higher completion rates.

- For top rated proposals that can mean completion rates of >100%, while 80% is considered completed in oversubscribed regions.
- Second tier proposals only got observed if they were outside of oversubscribed regions.
- Surveys should not expect a uniform sky coverage but to be biased towards the north.
Visibility Tool

Source which get well above 60° elevation are out of range for a long time and thus harder to schedule.

Dashed lines means vignetted or invisible.

SOFIA Workshop – NASA Ames – Nov 7&8, 2011
Visibility Tool

Note the difference between heading and course. They would be the same, if there were no wind.

Dashed lines means vignetted or invisible.
Flight Plan: Basic Science 1
Flight #1
Planned for 2011-05-06 (UT)

1. The top panel shows a draft version of the plan, which was too long.
2. The plan shortened.
3. When the pilots reviewed the plans, they indicated additional problematic airspaces.
 A set-up leg needs to be added.
The orange and yellow areas (SUAs) are off-limits except Edwards.
Mexican air space is off-limits for now. Canadian will become available.
On the next slides, see how tracks and source positions relate.
5:00 UT – Frosty Leo/Gamma Draconis
8:00 UT – Alpha Bootis
11:15 UT – HD 161868 & Beta Pegasi
Input to Flight Planning

Per Flight Rules

- Total maximum flight time is **10 hours** per flight take-off till landing. Shorter in the summer. Initially we plan for **9.5hrs** to have room for adjustments.
- Approximate altitude profile:
 - 4 hours before landing at 43,000ft
 - 6 hours before landing at or above 41,000ft
 - 9 hours before landing at or above 38,000ft
- Telescope cavity door remains closed below 15,000ft.
- Telescope door remains closed when the sun is above the horizon as seen from the aircraft.
- First observation ~60 minutes after take-off
- Last observing leg should end within 150nm of Palmdale
- Observations should end when sun comes above -10°
- Aircraft descent and approach takes 30min, and SOFIA must land before 30min before sunrise.
Flight Planning Timeline

A flight series is an uninterrupted sequence of flights with one instrument. "T" is the start date of a flight series.

- T - 2months: Series requirements defined:
 [T – 2months to T - 6wk: Flight planners work on flight series.]
- T - 6wk: "Initial Series Plan" released to Science and Mission Operations and to pilots and navigators.
 - The Series Plan contains detailed flight plans for all flights in a series.
 - The Series Plan gets reviewed for observing efficiency, target ranking, calibrator requirements, calibration times get adjusted
 [T-6wk to T-4wk: Science Operations and Flight planners iterate series plan until signed off by Director]
 - Observers get notified of possible chances to fly with SOFIA
- T - 4wk: "Post-Science Series Plan" released
 - This package gets reviewed by Mission Operations for flight constraints, schedule, etc.
 [T-4wk to T-2wk: Mission Ops and Flight Planners finalize Series Plan]
- T - 2wk: "Post-MOPS Series Plan" released. Final Series Plan
"t" is the take-off time of an individual flight in the series.

- t - 7d: "Initial Flight Plan" is submitted to the pilots. [t - 7d to t-3d: Pilots and Science Flight Planners iterate individual flight plan]
- t - 1d: "t-36hWX Flight Plan" Flight Planners submit the flight plan updated to the weather forecast from 12:00 UT (04:00 PST) the day before the flight.
- t-8to12h: "t-12hWX Flight Plan" submitted to pilots. Forecast from 12:00 UT (04:00 PST) the day of the flight.
Summary

• Flight Planning starts with you!
 – Check source visibility with the visibility tool on the DCS web page or your favorite tool
 – Elevation range ~20°-60° plus moving observatory
 – If possible, choose your sources “opposite” of popular regions, ie. northern sources. Avoid sources that transit near the zenith.

• The flight plans go through many checks by Science and Mission Operations and pilots. No big changes after T-2m.
 ➔ Flight planning has a two month lead time.

• Once the flight plan is filed with Air Traffic Control on the day of flight, SOFIA has to stay on it.
 ➔ In general no adjustment of the observing sequence or even durations in flight.

• Questions: sofia_help@sofia.usra.edu

Thank you!