SOFIA: NASA’s Stratospheric Observatory for Infrared Astronomy

D. Backman -- SOFIA Outreach / SETI Institute / NASA-Ames
CSU Long Beach -- March 5, 2012
Outline

◆ The SOFIA Mission
 • Why build an airborne telescope?
 (background information about infrared astronomy)
 • SOFIA’s advantages & capabilities
 • First-generation instrument set

◆ SOFIA’s Science and Cosmic Evolution
 • Star and planet formation
 • Stellar and galactic evolution
 • Interstellar chemistry and organic molecules
 • Planets and planetary evolution

◆ SOFIA’s Airborne Astronomy Ambassadors
William Herschel

Discovery of Infrared Radiation - 1800
The full electromagnetic spectrum ...

Making Light of it All!
Getting the WHOLE picture

- An object can appear radically different depending on the type of light collected from it:

Constellation Orion
left: view at visual wavelengths
right: far-infrared view
Temperature determines the dominant type of radiation emitted ...

(left to right: Compton, Chandra, Hubble, and Spitzer space observatories)
View of troposphere / stratosphere boundary (tropopause) from above
thermal-IR image of Earth from meteorology satellite
SOFIA--The Next Generation Airborne Observatory

• 2.5-meter (100-inch) telescope in a Boeing 747SP
• Based at NASA-Dryden’s Aircraft Ops Facility in Palmdale, with Science Center at NASA-Ames
• 120+ 8-hour research flights per year; 20 year lifetime
• 20% share with the German space agency DLR
• The world’s largest portable telescope!
• Useful for both visible and infrared research
• 1+ month per year in southern hemisphere
• First test flights in 2007, first science flights in 2010
SOFIA — The Observatory

Educator work stations

Scientist work stations, telescope and instrument control, etc.

Pressure bulkhead

Open cavity (door not shown)

Telescope

Scientific instrument (1 of 7)
Movie - First Open Door Test Flight
ONBOARD SOFIA

View aft from Principal Investigator console; FORCAST mid-IR camera installed
SOFIA Light Path

Incoming Infrared Light

- Secondary Mirror
- Infrared Light Mirror
- Visible Light Mirror
- Primary Mirror

Spherical Hydraulic Bearing

- Light Tube
- Infrared Instrument
- Visible Light Camera
SOFIA’s primary mirror in coating tank
DIFFRACTION: limit to SOFIA’s angular resolution at $\lambda > 15 \, \mu m$

Representing the resolution of a 90-cm (36-inch) telescope

... versus a 250 cm (100-inch) telescope
The telescope:
Floating on spherical bearing;
Orientation/position sensed by gyroscopes/GPS;
Optical TV cameras view field around target
Aero-acoustics (1)

Acoustic Power Spectrum Density (PSD) versus frequency
Telescope Pointing Stability

Cumulative RMS: FDC Elevation Centroid Motion

Cumulative RMS: FDC Cross Elevation Centroid Motion

- SCAI-1: Feed Forward OFF, 35 Kft, 28 deg
- OCF-2: Feed Forward OFF, 35 kft, 28 deg
- OCF-2: Feed Forward Active, 35 kft, 35 deg
Image Quality (PSF size)

Point source image size in focal plane versus wavelength
SOFIA’s advantages & capabilities
SOFIA’s Advantages

What does SOFIA do that the Hubble Space Telescope can’t?

- SOFIA can easily study:
 - IR: objects much cooler than normal stars like the Sun
 for example: stars and planets in the process of forming;
 - IR: objects embedded in, or behind, opaque ISM dust clouds;
 SOFIA’s instruments can see into and through those clouds
 - IR: organic molecules in space, which have many of their
 spectral lines and bands at infrared wavelengths;
 - Mobility: Foreground solar system objects as they occult
 background stars.
What does SOFIA add to what the Spitzer infrared space telescope was able to do?

- SOFIA’s telescope mirror is 3x larger than Spitzer’s, so
 - SOFIA can see details 3x smaller
 - SOFIA can resolve objects in 9x more crowded regions

- SOFIA has more instruments than Spitzer (7 versus 3), so:
 - SOFIA has more ways to analyze a wider range of wavelengths
 - SOFIA will have 2nd-, 3rd- and 4th-generation instruments

- SOFIA has a design lifetime of 20 years, versus Spitzer’s 5 years (limited by cryogen supply)
SOFIA’s First-generation Scientific Instruments

The 7 first-generation instruments cover the full IR range with imagers and low-to-high resolution spectrographs

(http://www.sofia.usra.edu/Science/instruments/)
First four instruments ...

FORCAST mid-IR camera (Cornell)

GREAT far-IR heterodyne spectrometer (MPIfR)

HIPO optical high-speed photometer (Lowell Observatory)

FLITECAM near-IR camera (UCLA)
SOFIA’s Scientific Instruments

- FORCAST (camera; Cornell) 2010
- GREAT (spectrometer; Germany) 2011
- HIPO (photometer; Lowell Obs.) 2011
- FLITECAM (camera; UCLA) 2011
- FIFI LS (spectrometer; Germany) 2012
- HAWC (camera; U. Chicago) 2012
- EXES (spectrometer; Ames/UC-Davis) 2013
Star and Planet Formation
SOFIA mid-IR image of Orion Messier 42 star-forming region
Messier 101 -- The “Pinwheel” Galaxy
SOFIA’s angular and spectral resolution will allow discernment of:

- How much material is fed into the central black hole and much gravitational potential energy is released thereby
- Characteristics of the resulting variable infrared source
- How our galaxy compares with other galaxies hosting active nuclei

Based on a slide by Kimberlee Gresham
“Starburst” galaxy Messier 82

Inset (visible light)

Visible light image

SOFIA infrared image (20, 32, and 37 \(\mu m \))
Interstellar Chemistry and Organic Molecules
ORGANIC MOLECULES IN SOLAR SYSTEM OBJECTS

- Murchison meteorite
- Comet Wild 2
- Saturn’s moon Titan
- Saturn’s moon Enceladus
Eagle Nebula (Messier 19) “Pillars of Creation” star-forming region – brown dust is partly organic substances.
Red-brown color represents organic molecules in galaxy Messier 81’s star-forming clouds.
Planets and Planetary Evolution
SOFIA’s “First Light” Image of Jupiter
May, 2010
VENUS – did it once have oceans? Need further spectroscopy (esp D/H ratio) and modeling of atmospheric chemistry.
Methane in the Martian Atmosphere

- Methane gas was recently detected in Mars’s atmosphere using ground-based telescopes.
- The methane gas distribution is patchy and changes with time.
- Most methane in Earth’s atmosphere is produced by life, raising questions about its origin on Mars.

View of Mars colored according to the methane concentration observed in the atmosphere. Warm colors depict high concentrations.
SOFIA is able to:

- Go anywhere on Earth to reach the occultation shadow of an object
- Can probe the sizes, structures (rings & moons), and atmospheres of solar system bodies by measuring how they occult background stars
- This will be the primary objective for HIPO (High-speed Imaging Photometer for Occultations)
SOFIA observations of a stellar occultation by Pluto on July 23, 2011

- Dwarf planet Pluto ($V \sim 14$) occulted a star ($V \sim 14.4$).
- SOFIA met the shadow of Pluto in mid-Pacific. ➞
- HIPO (Lowell Obs.) and FDC (DSI) instruments observed the occultation simultaneously.

Image sequence from the Fast Diagnostic Camera (FDC)

Pluto (circled) is 13 arcsec from the star 200 minutes before the occultation.

Just before occultation: Pluto and star merged, combined light.

During occultation: Pluto and star merged, only Pluto light seen.

After occultation: Pluto and star merged, combined light.
SOFIA’s E&PO Programs: Airborne Astronomy Ambassadors
SOFIA Outreach Responsibilities

Education
- FLAGSHIP PROGRAM: research flight experience for educators
- * Summer workshops for college faculty and undergraduates to encourage research
- Production of classroom activities & curricula; school visits; teacher workshops
- Exhibits in science museums and similar venues (e.g. Ames Visitors Center)

Public Outreach
- SOFIA program website content, printed materials & “new media” presence
- Displays at public events (e.g. air shows, street fairs)
- Contacts with local government bodies, representatives, & civic groups

Public Affairs
- News releases and media productions regarding SOFIA achievements
- Support for media science coverage (e.g. magazine articles, NOVA programs)
- Long-term relationships with media & journalists
- Support for SOFIA personnel in news media interviews

Science Outreach (shared responsibility)
- SOFIA exhibits, talks, posters and PR materials at scientific conferences
- Support for talks, posters and papers by SOFIA scientists and engineers
- Role in definition and management of Early Science program
On May 10, NASA announced the selection of six educators from across the U.S. to serve as the first class of SOFIA Airborne Astronomy Ambassadors (AAAs).

The AAA program is SOFIA’s flagship E/PO program. Throughout SOFIA’s 20 years of operations, as many as 60 educators per year will be selected by peer review of proposals. The Ambassadors will fly and work on SOFIA as partners to teams of astronomers.

AAAs have developed specific plans for using their SOFIA experiences to inform their teaching, in addition to sharing their knowledge with other educators.

The entire inaugural class of six U.S. and two German AAAs has now flown on SOFIA.
For further information:

- SOFIA Science Center home page
 - http://www.sofia.usra.edu
 (includes notice & link for AAA applications -- due 11/15)

- Spitzer Space Telescope’s award-winning infrared tutorial
 - http://coolcosmos.ipac.caltech.edu
 (includes instructions for home-made Herschel demo)

- To contact the presenter:
 - dbackman@sofia.usra.edu