Interface Control Document for the
Data Cycle System (DCS)

DCS_SI_01

THIS CONTRACT DOCUMENT IS UNDER NASA CONFIGURATION
CONTROL

Document Number: SCI-US-ICD-SE03-2023G

Date: August 28, 2018
Revision: G

AFRC
Armstrong Flight Research Center
Edwards, CA 93523

ARC
Ames Research Center
Moffett Field, CA 94035

German Space Agency, DLR
Deutsches Zentrum für Luft und Raumfahrt
Interface Control Document for the Data Cycle System (DCS) DCS_SI_01

This Contract Document is Under NASA Configuration Control

CONCURRENCE:

ALAN RHODES
NASA / Alan Rhodes, SI Development Manager
Digitally signed by ALAN RHODES
Date: 2018.08.31 10:47:22 -07'00'

MAY WINDREM
NASA / May Windrem, Ground Systems Lead
Digitally signed by MAY WINDREM
Date: 2018.09.04 09:48:06 -07'00'

JONATHAN BROWN
NASA / Jonathan Brown, SE&I Lead
Digitally signed by JONATHAN BROWN
Date: 2018.09.04 10:00:03 -07'00'

APPROVAL:

EDWARD STANTON
NASA / Edward Stanton, Observatory Systems Director
Digitally signed by EDWARD STANTON
Date: 2018.09.04 11:01:40 -07'00'
Interface Control Document for the Data Cycle System (DCS) DCS_SI_01

This Contract Document is Under NASA Configuration Control

Revision History (NASA)

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>05/02/2008</td>
<td>Initial Release</td>
<td>OCCB</td>
</tr>
</tbody>
</table>
| A | 06/23/2010 | Updated keyword list for Early Science
Added section on instrument configurations
Updated section on instrument observation modes
Added appendix describing requirements for Early Science.
Updated sections 1 and 7 to be more clear on what applies to all SIs and what applies to only FSIs.
Corrected spelling and MCS references
Updated datamanifest section for new grammar.
Added section on "Sources for Keyword values"
Update to chop defs and HK locations
Added ChopTip and ChopTilt
Updated KW dictionary version definition (KWDICT) to refer to DCS_SI_01.
Updated section 7 to include missing data values.
Updated obs_id spec to match with new Mission ID spec (see JIRA MOPS-168) | OCCB |
| B | 02/09/2012 | Transferred source document to MS Word.
Updated AOT sections with new spec.
Removed extraneous information from Data Manifest section; moved DM DTD to Appendix C.
Moved pipeline spec grammar to Appendix F.
Removed material from White Box pipelining section (now TBD).
Removed appendix on interface requirements for Early Science (not applicable anymore, refer to Rev. A).
Updated Section 2 to include specification of required keyword values for INSTCFG, INSTMODE, SPECTRAL, and SLIT. | OCCB |

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
<table>
<thead>
<tr>
<th>Date</th>
<th>Updates</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/18/2012</td>
<td>Added discussion of download limit to Section 7.1 (DCS RFI/RFA 109) Addressed DCS RFI/RFA 171</td>
<td>OCCB</td>
</tr>
<tr>
<td>10/16/2012</td>
<td>Updated Keyword Dictionary; see change log in Appendix E. Replaced Appendix C with current DM DTD and description. Corrected Section 3 to include SPECTEL1/2 and SLIT keywords and current spec for FORCAST. Editorial corrections</td>
<td>OCCB</td>
</tr>
<tr>
<td>05/03/2013</td>
<td>Updated Section 7 to include requirements for Level 2, 3, and 4 (TBD) data, and re-titled. Removed Section 8 (Data Reduction) – this information is now part of the Generic Pipeline requirements. Removed Appendix on Pipeline Specification Grammar: this is now handled internally as part of the Data Processing System. Updated Appendix D (Keyword Dictionary) to include recommended values for Level 2 and 3 data. Added PIPELINE and PIPEVERS to keyword dictionary (no impact to SI teams).</td>
<td>OCCB</td>
</tr>
<tr>
<td>08/31/2015</td>
<td>Removed pipeline related contents. Pipeline functions have been moved to the Data Processing System. Added ObsPlan.dtd Added DCS provided services to FMI Added ObsPlanObsBlockInfoList.dtd Updated FITS keyword dictionary with new and updated keywords requested by PIPELINE and SI teams.</td>
<td>OCCB</td>
</tr>
<tr>
<td>04/03/2018</td>
<td>Added Get FlightPlanIDList and Download .fp</td>
<td>OCCB-CCR-1477</td>
</tr>
</tbody>
</table>
| Replaced CORBA getObsPlanIDList.jsp with https getProposalIDList.jsp
| Deprecated getPropCover.jsp
| ObsPlan dtd MustDo changed to Priority, updated GuideStar, added IsThesis, IsExtraTime
| ObsBlockInfoList XML replaced proposal info with PropID, added more details in ObsBlockInfo
| Clarified Date and Time default keyword value
| Added pipeline related keywords
| USRA deliverable to NASA. This document is under NASA CM Control (OCCB-CCR-1477) |
Interface Control Document for the Data Cycle System (DCS)

DCS_SI_01

SCI-US-ICD-SE03-2023 (CDRL 310907)

Date: May 30, 2018
Revision: G

AFRC
Armstrong Flight Research Center
Edwards, CA 93523

ARC
Ames Research Center
Moffett Field, CA 94035

German Space Agency, DLR
Deutsches Zentrum für Luft und Raumfahrt

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
ICD for the Data Cycle System (DCS_SI_01)
SCI-US-ICD-SE03-2023, Rev. G

AUTHOR:

Lan Lin
Dr. Lan Lin, USRA SOFIA DCS Manager

Digitally signed by Lan Lin
DN: cn=Lan Lin, o=USRA, ou=DCS,
email=llin@sofia.usra.edu, c=US
Date: 2018.06.29 12:11:50 -07'00'

APPROVAL:

William D. Vacca
Dr. William Vacca, USRA SOFIA Assoc. Director for Data Systems

Digitally signed by William D. Vacca
DN: cn=William D. Vacca, o=USRA, ou,
email=wvacc@sofia.usra.edu, c=US
Date: 2018.06.29 23:47 -07'00'

John Meduri
John Meduri, USRA SOFIA Business Manager

Digitally signed by John Meduri
DN: cn=John Meduri, o=USRA, ou,
email=jmeduri@usra.edu, c=US
Date: 2018.07.02 09:13:27 -07'00'

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
REVISION HISTORY

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>5/2/08</td>
<td>Initial Release</td>
<td>R.Y. Shuping</td>
</tr>
<tr>
<td>A</td>
<td>6/23/10</td>
<td>§ Updated keyword list for Early Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Added section on instrument configurations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated section on instrument observation modes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Added appendix describing requirements for Early Science.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated sections 1 and 7 to be more clear on what applies to all SIs and what applies to only FSIs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Corrected spelling and MCS references</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated datamanifest section for new grammar.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Added section on "Sources for Keyword values"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Update to chop defs and HK locations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Added ChopTip and ChopTilt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated KW dictionary version definition (KWDICT) to refer to DCS_SI_01.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated section 7 to include missing data values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§ Updated obs_id spec to match with new Mission ID spec (see JIRA MOPS-168)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2/9/12</td>
<td>Transferred source document to MS Word.</td>
<td>R.Y. Shuping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated AOT sections with new spec.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed extraneous information from Data Manifest section; moved DM DTD to Appendix C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moved pipeline spec grammar to Appendix F. Removed material from White Box pipelining section (now TBD).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed appendix on interface requirements for Early Science (not applicable anymore, refer to Rev. A).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Section 2 to include specification of required keyword values for INSTCFG, INSTMODE, SPECTRAL, and SLIT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added discussion of download limit to Section 7.1 (DCS RFI/RFA 109)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Addressed DCS RFI/RFA 171</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7/18/12</td>
<td>Editorial mods to Sections 6 and 7.</td>
<td>R.Y. Shuping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section on SI specific keywords removed (7.2)</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Changes</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>10/16/2012</td>
<td>Removed references to “Early Science.” Removed discussion of FILENAME keyword that was incorrect (7.3).</td>
<td>R.Y. Shuping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Removed section on user defined coordinate systems (7.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added section 7.9 for Missing Keywords. Updated keyword dictionary in Appendix E (see detailed change log therein).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated section 7.7 (WCS keywords).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Updated Keyword Dictionary; see change log in Appendix E.</td>
<td>R.Y. Shuping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replaced Appendix C with current DM DTD and description.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrected Section 3 to include SPECTEL1/2 and SLIT keywords and current spec for FORCAST.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Editorial corrections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/5/2013</td>
<td>Updated Section 7 to include requirements for Level 2, 3, and 4 (TBD) data, and re-titled.</td>
<td>R.Y. Shuping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Removed Section 8 (Data Reduction) – this information is now part of the Generic Pipeline requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Removed Appendix on Pipeline Specification Grammar: this is now handled internally as part of the Data Processing System.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated Appendix D (Keyword Dictionary) to include recommended values for Level 2 and 3 data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added PIPELINE and PIPEVERS to keyword dictionary (no impact to SI teams).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 8/31/2015</td>
<td>Removed pipeline related contents. Pipeline functions have been moved to the Data Processing System.</td>
<td>L.Lin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added ObsPlan.dtd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added DCS provided services to FMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added ObsPlanObsBlockInfoList.dtd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated FITS keyword dictionary with new and updated keywords requested by PIPELINE and SI teams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 5/30/2018</td>
<td>Added Get FlightPlanIDList and Download .fp</td>
<td>L.Sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replaced CORBA getObsPlanIDList.jsp with https getProposalIDList.jsp</td>
<td>L.Lin</td>
<td></td>
</tr>
</tbody>
</table>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
Deprecated *getPropCover.jsp*

- ObsBlockInfoList XML replaced proposal info with PropID, added more details in ObsBlockInfo
- Clarified Date and Time default keyword value
- Added pipeline related keywords
- Changed the source of TEMPPRI1/2/3, TEMPSEC1, FOCUS_ST, FOCUS_EN, FBC-STAT source from MCCS to TA
Table of Contents

1. **INTRODUCTION** .. 8
 1.1. SUPPORT SCIENCE INSTRUMENTS ... 8
 1.2. SUPPORT FLIGHT PLANNING ... 9

2. **SCOPE OF EXTERNALLY VISIBLE INTERFACES** ... 9

3. **INSTRUMENT CONFIGURATIONS** ... 10

4. **OBSERVING MODES** ... 11

5. **ASTRONOMICAL OBSERVATION TEMPLATES** ... 12

6. **OBSERVATION CONTROL** ... 13
 6.1. INSTRUMENT STATES .. 14
 6.2. INSTRUMENT COMMANDS .. 14
 6.2.1. The Stop Command .. 15
 6.2.2. Asynchronous Status Message from the Instrument .. 15
 6.2.3. Instrument State Diagram ... 15

7. **DATA MANIFESTS** ... 16
 7.1. INTRODUCTION ... 16
 7.2. LIFE CYCLE OF THE DATA MANIFEST .. 17

8. **SCIENCE INSTRUMENT DATA PRODUCTS** .. 19
 8.1. DATA PRODUCT REQUIREMENTS ... 19
 8.1.1. Level 1 Data Product Requirements ... 20
 8.1.2. Level 2 Data Product Requirements ... 20
 8.1.3. Level 3 Data Product Requirements ... 21
 8.1.4. Level 4 Data Product Requirements (TBD) ... 21
 8.2. SCIENCE INSTRUMENT METADATA (KEYWORDS) .. 21
 8.2.1. Overview .. 21
 8.2.2. Science Instrument Observation Keywords .. 22
 8.2.3. Unique Identifiers for SOFIA Observations ... 22
 8.2.4. Data File Structure and Organization .. 23
 8.2.5. Condition .. 23
 8.2.6. Telescope Pointing Coordinate Systems .. 24
 8.2.7. World (Physical) Coordinate Systems .. 24
 8.2.8. Sources for Keyword Values .. 24
 8.2.9. Required Keywords .. 25
 8.2.10. Common FSI Keywords ... 25

9. **OBSERVATION PLAN** .. 26
 9.1. DESCRIPTION ... 26
 9.2. DOWNLOAD OBSPLAN USING THE DCS WEB HTTPS ... 26
 9.3. DOWNLOAD PROPOSAL ID LIST USING THE DCS WEB HTTPS 26
 9.4. DOWNLOAD PROPOSALS USING THE DCS WEB HTTPS (DEPRECATED) 27

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
ICD for the Data Cycle System (DCS_SI_01)
SCI-US-ICD-SE03-2023, Rev. G

1. INTRODUCTION

The Data Cycle System (DCS) supports SOFIA science instruments and SOFIA mission operations in the following ways:

1.1. Support Science Instruments

- Provides a common support framework to an instrument through the entire data lifecycle of proposal preparation, observation development and execution, data archiving and reduction, and data retrieval.
- Provides a common representation of instrument functionality (via instrument configurations, observing modes, and astronomical observation templates (AOT)) to the general investigator.
- Simulate planned SOFIA observations (known as astronomical observation requests (AOR)) in order to evaluate their correctness and readiness prior to flight.
- Convert planned SOFIA observations into whatever format is required by the FSI, and queue the observations to the instrument.
- Execute FSI reduction pipelines on behalf of the investigator, processing the raw data obtained during a flight.
- Provide long-term archival and retrieval functions for raw and reduced data.

This document describes and specifies the DCS/SI interfaces that provide these capabilities; the following list summarizes the efforts required of the FSI Teams for the adoption of an FSI into the DCS framework.

1. Define the instrument configurations (§2) and instrument observing modes (§3) to be supported for use by the general investigator.
2. Define any instrument unique structure and grammar of an AOT for each defined observing mode. Note that this task may be simplified to defining only a single AOT structure and grammar to be used across all observing modes.
3. Create any instrument-unique AOT content and all AOT parameters for each AOT.
4. Supply a simulator that generates data typical of the instrument for a given observation.
5. Provide an instrument command-level syntax or API that supports operations to abort, extend, pause, resume and stop an observation, and reports the instrument’s status back to the observation queue (refer to §5).
6. Define the syntax translations that map data defined in an AOT to the instrument command-level syntax or API that set up the observation mode.
7. Create at least one data reduction pipeline for each instrument observing mode, and create...
a data reduction pipeline specification §8 for each. This will include the specification of any special pipeline parameters, and pipeline environment variables, used by these pipelines.

8. Upon completion of an observation, provide a data manifest (§6, §C), with entries for all data to be archived and reduced.

9. Define any unique keywords (§7) that will be required by users searching for this instruments data in the DCS Archive.

Specification that is unique to an SI (e.g., the actual content of AOT for each of an instrument’s modes, instrument-unique keywords) is necessarily contained in a separate SI-to-DCS ICD. This ICD is intended primarily for facility instruments, but the sections on configurations and modes (§2,§3) apply to any SI that will be supported by the SOFIA Proposal Tool (SPT) and Time Estimators (SITE); and the section on database keywords (§7) applies to all SIs that will submit data to the DCS archive.

1.2. Support Flight Planning

The Data Cycle System (DCS) supports Flight Management Infrastructure (FMI) and Cycle Schedulers (CS) in the following ways:

- Provides interfaces for Flight Plan Editor (FPE) to upload flight plans to the DCS database server for storage, and searching.
- Provides interfaces for DCS to send ObsPlan, Flight Plans and ObsPlanObsBlockInfoList back to the FMI upon retrieval requests:
 - FPE, CS and Short Term Scheduler (STS) can get ObsPlans from DCS
 - CS can get ObservingProposals
 - FMI can get FlightPlan binary, get Flight ID list, and ObsPlanObsBlockInfoList

2. SCOPE OF EXTERNALLY VISIBLE INTERFACES

This document describes the externally visible interfaces provided by the DCS to Science Instruments, FMI and CSs. The DCS externally visible interface consists of Observation Plans (ObsPlans) and ObsPlan/Observation Block Info List definition which are read, written, and transmitted as XML data. The DCS generates and writes ObsPlans as XML data stored in (UTF-8) text files. Alternatively, when the FMI uploads or downloads Flight Plans (FP) to/from the Data Cycle System, XML data are transmitted as text streams. The same applies to the observation blocks info list (make sure we call this the same thing ALL the time - ObsPlanObsBlockInfoList definition. We present in this document the set of method to transmit data and the permissions associated with each of the method where applied.

The FMI to DCS and Cycle Scheduler to DCS ICDs are not part of the scope. The interfaces provided by FMI and CS are documented in FMI Interface Control Document (SCI-US-ICD-SE03-2005), and Interface Control Document for the Cycle Scheduler (SCI-US-ICD-SE03-2040).
3. INSTRUMENT CONFIGURATIONS

Each instrument must define at least one configuration for use and may define additional configurations if they desire. Configurations are **not** the same as observing modes: a configuration describes a particular way that the SI is set up for astronomical observing, whereas an observing mode defines one way to use the instrument in a particular configuration. The SI teams are free to define these configurations as they see fit, but in general, an instrument configuration should map to a unique datatype (IMAGE, SPECTRAL, OTHER), and/or a unique set of spectral elements (filters, gratings, etc…).

For each configuration, the SI-to-DCS ICD needs to specify:

- Datatype produced (IMAGE, SPECTRAL, OTHER; see Keyword Dictionary)
- The name of the configuration to be used in the AOT and FITS files.
- Applicable instrument observing modes (see next section)
- Spectral elements available, and any restrictions/rules governing filter/grating selection;
- Complete set of algorithms/look-up tables for calculating the sensitivity as a function of wavelength/filter.

Some configuration examples:

- **Single Channel Instruments**: An instrument with a single detector and filter set might only need a single configuration, e.g. IMAGING or GRISM. An integrated field spectrometer would probably define a single GRISM configuration.

- **Dual-Use Instruments**: Some instruments may be utilized both as imagers and spectrometers (with the use of grisms or similar implements). In this case, both IMAGING and GRISM configurations should be defined.

- **Multiple Channel Instruments**: Instruments with more than one detector or back-end providing different sets of filters for each channel should consider defining multiple configurations, one for each channel and perhaps one for dual simultaneous channels, e.g. IMAGING_DUAL, IMAGING_SWC, IMAGING_LWC.

The configuration specification will be used in a number of areas of the DCS including:

- the SOFIA Proposal Tool (SPT) and Instrument Time Estimators (SITE);
- AOT specification;
- observation and mission planning;
- archive search criteria.

Hence the SI teams must specify a consistent set of values for configurations, modes, and spectral elements. In particular, the SI must document in the SI-to-DCS ICD all the possible values of the following FITS keywords:

```
INSTCFG
INSTMODE
SPECTEL1/2
SLIT (if applicable)
```

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
Keyword values should be strings with no whitespace (underscores are allowed); and since they will be used throughout the DCS, they should not be changed without notifying the DCS team and updating the relevant SI-to-DCS ICD. For the SPECTEL1/2 keywords, the SI should use standard names for OTS filters. For custom filters, we recommend using the following prescription:

\[\text{INS}_\text{NNNN} \]

Where “INS” is a three letter instrument code (e.g. “FOR” for FORCAST), and “NNNN” is a 4-numeral designation of the central wavelength or frequency. For example, a FORCAST 38.0 micron filter might be “FOR_3800”, while a 7.6 micron filter would be “FOR_0760”. For spectroscopic instruments that use a slit, all possible slits must be identified with a unique name, again a string with no whitespace (e.g. “SHORTSLITSS_N” for a short slit with fixed width; or “LONGSLITLS_N” for a narrow long slit).

For example, a set of keywords for FORCAST might be:

<table>
<thead>
<tr>
<th>CONFIG</th>
<th>MODE</th>
<th>SPECTRAL 1</th>
<th>SPECTRAL 2</th>
<th>SLIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGING</td>
<td>C2N</td>
<td>NONE</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2NC2</td>
<td>FOR_F064</td>
<td>FOR_F315</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_F066</td>
<td>FOR_F336</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_F077</td>
<td>FOR_F348</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_F111</td>
<td>FOR_F371</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_F197</td>
<td>(If NONE specified, single channel implied.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_F242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRISM_XD</td>
<td>C2N</td>
<td>FOR_XG063</td>
<td>N/A</td>
<td>FOR_SS24</td>
</tr>
<tr>
<td></td>
<td>C2NC2</td>
<td>FOR_XG111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRISM</td>
<td>C2N</td>
<td>FOR_G063</td>
<td>N/A</td>
<td>FOR_LS24</td>
</tr>
<tr>
<td></td>
<td>C2NC2</td>
<td>FOR_G111</td>
<td></td>
<td>FOR_LS47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_G227</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOR_G329</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. OBSERVING MODES

The observing mode is the key idea behind the adoption of FSI within SOFIA; all other aspects of DCS and FSI interfacing are ultimately derived from this common starting point. Additionally, there is an output intended not for the DCS, but for the general investigator: the definition of the mode itself. For these reasons, the observing mode is considered a deliverable in this ICD.
Each FSI is expected to define at least one “observing mode” for use by SOFIA general investigators. An observing mode is an overall method of using the instrument that non-experts might follow in order to obtain useful science results in their observations. The observing mode should capture the best practice of an instrument scientist, for use by other scientists. Though entirely subjective in nature, a well-defined observing mode leaves as little room for error as possible in the use of the instrument by non-expert personnel; consequently, observing modes can be used to present a restricted subset of an instrument's functionality to the general investigator.

The definition of an FSI observation mode should include the name and description of the mode (what the mode accomplishes), the applicable instrument configuration, and the commands and interfacing needed by the instrument in this mode (communication requirements, command languages, API, and so forth). A set of algorithms for reducing the data that the instrument will collect during the observation can also be provided with an observing mode; the DCS team encourages FSI teams to consider data reduction as a part of their instrument deliverables.

Examples of existing observing modes include the HAWC “Stare And Nod” mode, the FORCAST “Two Position Chop” mode, and the FLITECAM “Nodding” mode. The definition of each of these modes would include descriptions suitable for the general investigator to decide which mode best suits his observational needs.

Once an observing mode is defined in such “human terms,” it can be refined into specific DCS inputs such as Astronomical Observation Templates; these are covered in subsequent sections. However, it is important not to overlook the audience of the observing mode: the general investigator. Without a well-defined observation mode, a general investigator would have no way of knowing what observations the instrument is capable of making.

Over the lifetime of the instrument, the initial set of observing modes will undoubtedly be expanded to capture new practice and procedures. The new modes can be added to the DCS later in the same way that at least one observing mode is provided now; the DCS is intended to support multiple observing modes per instrument.

There may be other ways of operating an instrument outside the scope of the DCS, bypassing the development of AOT and other deliverables. These “PI-like” operating models are outside the scope of this document. The FSI team are free to define as many of these other interfaces and models as they deem necessary, however none of them can be considered a deliverable supporting the SOFIA DCS operating model.

5. ASTRONOMICAL OBSERVATION TEMPLATES

Once an observing mode for an instrument has been defined, one will have a list of attributes, parameters, or other settings which need to be provided to the instrument when collecting data in that mode. The astronomical observation template (AOT) is the mechanism by which these settings are defined in the DCS. Once an AOT is defined, the DCS will use it as a guide in the development of observations for this instrument. An observation developed from the contents of an AOT is known as an astronomical observation request (AOR).

An AOT defines not only what parameters need to be supplied to an FSI to make an observation, but it also describes what values those parameters may take. In this way, an AOT may present a simple subset of the total functionality in an FSI to an investigator, or perhaps limit the range of
values for a given parameter to a known set that will yield useful observations. An AOT also provides facilities to name the calibration observations that should be used in a target observation, and to supply information used by the observatory itself such as how the telescope and chopper will be used in the observation. It can also define an expected range of valid observation duration times, providing bounds that reflect constraints set by the observatory. This observatory information includes telescope functionality such as tracking, mapping, dithering, and nodding.

Finally, an AOT indicates the required and optional reduction pipelines in the DCS that can process data collected in this mode. The DCS can provide SOFIA with a wide range of data reduction pipelines; this mechanism exists so that the instrument team can identify which pipelines are known to work with data collected from an instrument in a specific mode.

Remember, the AOT contains information that is used to define observations from the observatory's point of view, not just the instrument.

AOTs will be defined internally within the DCS, but the specification of parameters, default values, data types, units, etc… must be provided by the FSI teams. Of special consideration are any dependencies among the parameters: for example, if the values of one parameter are restricted based on the value provided for another parameter. A common set of observatory level parameters will be available for all FSIs: modifications to these parameters should be discussed with the DCS Development and Science Operations teams. A template for defining an FSI AOT is given in B.

Once the AOT has been defined in the specific SI-DCS ICD, the DCS development team will cast the parameters into an XML formatted file for use with DCS AOR Editor (SOFIA Spot) and any other needed tools. The DCS development team must be notified of any proposed changes to the AOT, which then must be documented in the SI-DCS ICD.

6. OBSERVATION CONTROL

This section documents the command and control protocol between the DCS and an FSI. The underlying nature of the interface (e.g. network object functions, socket bytestreams) can be developed between the instrument and DCS teams, but the functionality outlined in this section must be available via that interface. This interface will be used by the DCS Observation Queue (OQ).

On boot, the instrument should start listening for a connection from the Observation Queue. Once connected, the OQ can perform the following classes of actions:

- query for instrument status,
- send instrument-specific configuration commands, and
- command the instrument to start, pause, resume, truncate, and extend whatever data acquisition cycles have been configured.

The instrument responds to these OQ actions with status information as defined here, and with values of the current instrument configuration. The instrument also sends unsolicited (i.e. asynchronous) messages when the acquisition completes, when a problem arises, when a state change occurs due to events not initiated by the DCS, or when normal communication with the DCS is being affected (e.g. the imminent shutdown of a network connection).
6.1. Instrument States

It is understood that there are four instrument states. When the OQ requests the status of the instrument, one of the following results should be returned:

- **ready** The instrument is ready to acquire data. The number of acquisitions (cycles) currently configured is returned with the instrument's status.
- **running** The instrument is currently acquiring data. The number of cycles completed is returned with the instrument's status.
- **paused** Data acquisition by the instrument is currently suspended. The number of cycles completed prior to being paused should be returned with the status. Additionally, the instrument should indicate a reason for the current paused state; typical indications include:
 - The pause was requested via the DCS interface to the instrument.
 - The pause was initiated via a native instrument interface.
 - A problem in an indicated subsystem is responsible for the delay.
- **notready** The instrument is not prepared to acquire data. The reason for this state must be returned with the instrument's status; examples of possible reasons for this state include:
 - The instrument has not been configured, or a required configuration parameter has not yet been set.
 - The instrument is not currently receptive to external commands.

6.2. Instrument Commands

There are eight specific commands to which the instrument is required to respond. These commands, and what they represent to the instrument, are presented here:

- **status** Send current instrument state and status.
- **itime** Send current integration time.
- **go** Begin acquisition as configured, then send status.
- **stop** This command immediately reconfigures the instrument to stop acquiring data after \(n \) cycles have completed, then send status. The number of cycles to complete, \(n \), will be sent as a parameter with the stop command. The status from this command is further explained below. Response to this command may be delayed until the current cycle is complete, or some other consideration of efficiency or convenience is satisfied.
- **extend** Extend the current observation by a number of cycles \(n \). The number of additional cycles is sent as a parameter with this command. If this number \(n \) is positive, the observation should be lengthened by \(n \) cycles. If this number \(n \) is negative, then the observation should be shortened by \(-n \) cycles.
- **pause** Suspend data acquisition, then send status. Response to this command may be delayed until the current cycle is complete, or some other consideration of efficiency or convenience is satisfied.
- **resume** Resume data acquisition, then send status.
• **abort** Immediately end data acquisition, then send status. This command should be given a higher priority and immediacy in its processing than either the **stop** or **pause** commands.

In addition to the commands above, other commands specific to the instrument are expected. These commands are used to create or modify observation configuration information present in the instrument. They, and their results, must be documented by the FSI team along with the documentation that presents how the instrument state and command interfaces are presented to the DCS.

If the instrument receives a command it cannot interpret, it must return an error indicating such a condition. This error response must be obvious and distinct from all other FSI responses, and it must reproduce the objectionable content from the illegal command. This error should be provided in the simplest format matching the instrument's interface (e.g. a simple string for an FSI communicating over a byte stream, a structure for an FSI communicating over CORBA).

The remainder of this section provides additional information on specific aspects of the FSI/OQ command interface.

6.2.1. The Stop Command
The **stop** function immediately reconfigures the instrument to acquire data for only n cycles in the current series. Instrument specific configuration commands are required to reconfigure the number of total cycles permanently. Because of this, **status** can indicate that it is "running cycle 3 of 2," indicating that after completing 3 cycles and while working on the 4th cycle, the **stop** command was received with a parameter of 2. After the 4th cycle, the instrument will respond to the new termination value and end the observation. Since the original configuration was to complete, say, 10 cycles, and this configuration is not affected by the **stop** command, the new status for this run can be “completed, 4 of 10.”

6.2.2. Asynchronous Status Message from the Instrument
Although most communication in the OQ system is synchronous, there is one asynchronous (i.e. unsolicited) message sent by the instrument to the DCS. This is a [[status]] message, and is typically sent by the FSI as a reaction to one of the following events:

- Data acquisition has completed.
- Data acquisition has resumed.
- Instrument is entering the **notready** state.
- Instrument is back from the **notready** state.

6.2.3. Instrument State Diagram
Now that states and commands have been presented, a state diagram outlining the transitions between instrument states and the commands that cause them is presented in Figure 1. **Bold transition text** indicates the transition criteria, while the plain text underneath presents the expected results after the state change.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
7. DATA MANIFESTS

7.1. Introduction

One of the first questions that arises when we consider archiving data from SOFIA is exactly what data need to be archived and where they are located. Before we can worry about database management and driver design we must first address this simple issue. The Archive Data Manifest Interface Format is designed to provide the necessary type and location information for any data destined for the archive.

A simple format for an archive data manifest would be an ASCII text file containing a list of Uniform Resource Locators (URL). Such a file would address the fundamental requirements of identifying the location of each file that needs to be archived. From the standpoint of data “producers”, the data manifest described in this document is really just a list of URIs that point to unique files. The DCS Core and archive subsystems, however, require a data interchange format that has greater semantic richness.
This document describes a simple eXtensible Markup Language (XML) based format for describing archive data manifest documents. The use of XML allows us to take advantage of the large base of commercially available software for reading, writing and validating XML documents. Programmatic manipulation of XML documents is actually considerably easier than the manipulation of a simple text file.

The archive data manifest is a convenient format for exchanging information between the archiving system, the DCS core, and data producers (if desired). The data manifest was originally developed to provide a one-way flow of information from data “producers” to the archive (the primary data “consumer”). The need for a bi-directional means of communication between the DCS core and archive systems has expanded the role of the archive data manifest to include several functions beyond its original design goals. Data flows from the “producers” (e.g. instruments, MCCS, etc...) through the DCS Core to the archive by the creation of data manifest XML documents. The results of the archiving process, including any errors that are generated, are transmitted back to the DCS core via modified data manifests. The final version of a processed data manifest XML document (produced by the archiving software) includes all the information necessary to retrieve the archived data products from the SOFIA DBMS (Database Management System) and a record of when and how all of the data “ingestion” was carried out (times, software driver versions, operators, etc.).

7.2. Life Cycle of the Data Manifest

The archive is the ultimate consumer of all data produced by the SOFIA observatory. Data files will be produced by a variety of sources including the MCCS, scientific instruments, astronomers and SMO personnel. In order to be archived, these files must be described by a [[Datasource]] element within a Data Manifest XML document. The Data Manifest file is the document that a producer provides to the archive in order to identify data products intended for the archive.
Who produces the Data Manifest file for a given set of documents? The instrument group or software system that produces a set of files is the unit with the necessary expertise to create a data manifest. The data manifest DTD is the first point of contact and one part of the interface between SOFIA data providers and the DCS Archive. Each data “producer” must provide a data manifest document that describes the data that will be submitted to the archive. The data manifest file created by each “producer” will be provided to the DCS “core” software system. The DCS “core” software system will collect and package all data manifest files produced during a given operation and will hand these files off to the Archive system. The Archive software will process the data manifest files (obtained from the DCS core) and populate the archive's DBMS. Alternatively, the DCS core can also generate data manifest on a given set of mission data to be ingested by the archive system.

The Data Manifest XML file is also used to communicate the “status” and results of the archiving process back to the DCS Core system and ultimately to the “producers”. Errors that occur during archiving are documented by a combination of [[Errorreport]] and [[Timestamp]] elements that are individually associated with [[Datasource]] elements. These elements are added to the [[SofiaDatamanifest]] document during processing. After the processing of a Data Manifest document is completed, the modified XML document is submitted back to the DCS Core containing the “status” and results of the archiving process. The “success” or “failure” of

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
the DBMS transaction is indicated by the [[Archivingstatus]] element that may contain multiple [[Archivekey]] elements. The [[Archivekey]] elements can be used to retrieve the data from the SOFIA DBMS system using Structured Query Language (SQL). Since the Archive system has no direct knowledge of how to distribute the results of the archiving process, it is the responsibility of the DCS Core to assign responsibility for resolving errors to the appropriate actors. In some (most) cases, errors may be resolved by SOC personnel (e.g. DBA). In other circumstances, however, it may be necessary to refer the errors to the data “producers” (i.e. instrument groups) for resolution. After a data manifest file has been successfully processed it will be archived itself.

The DCS includes a tool called the Data Manifest Manager (DMM) for creating and modifying data manifest documents. The DMM allows documents conforming to the DTD to be created, written to, or read from a file, and validated against the DTD. The utility allows users to browse the local area network for files that are then added as [[Datasource]] elements to the data manifest file. [[Datasource]] elements may be added or removed from a document and existing elements may be modified. Existing data manifest documents may be edited and validated against the current DTD and new documents may be easily created.

MCCS House Keeping data are now extracted by a house keeping data reader and loaded to the house keeping data base. Ingestion of the MCCS HK data does not use the data manifest.

8. SCIENCE INSTRUMENT DATA PRODUCTS

8.1. Data Product Requirements

Four levels of data products are recognized by SSMO:
- Level 1 data are essentially raw from the instrument but in standardized format (FITS or CLASS);
- Level 2 data have been corrected for instrument artifacts (e.g., flats, darks, bad pixels);
- Level 3 data have been flux calibrated (e.g. BUNIT keyword takes image to MJy/sr);
- Level 4 data are high-order products possibly combining multiple exposures (e.g. mosaics, spectral cubes) (see Data Processing Plan for SOFIA Science Instruments [SCI-US-PLA-PM17-2010] for detailed descriptions.) All SI data submitted to the DCS for archiving must be in FITS format (currently) and adhere to the metadata (keyword) requirements in Section 8.2. In addition, there are a small set of requirements for each Level.

Recommended values for all level data products:
- AOR_ID – This is the only unique keyword that is carried from the proposal to observing plan to flight plan and level 1/2/3/4 data products. This keyword allows DCS to provide an accurate status on the AORs through out the planning and the only keyword that ties the data files that are in the various processing state.
- PLANID – This is the only keyword that can tie a data file to its original owner of the data, e.g. the PI that submitted the proposals that generated these data. This keyword enables the archive search by PI names.

8.1.1. Level 1 Data Product Requirements

In order to facilitate archive searches, the values of the following keywords must be specified in the SI-DCS ICD according to Section 3 above:

- INSTRUME *
- INSTCFG
- INSTMODE
- SPECTEL1/2 *
- SLIT

The values must match with the values specified for the instrument configurations, modes, and AOTs. Note that a single list of possible values can be submitted for both SPECTEL1 and 2. The values for these keywords will be used to construct database searches on the archive; values not listed in the SI-DCS ICD will be accepted by the archive, but will not be searchable (they will be collected up under the search term “OTHER”). Some important notes:

- Since this is a list for archival data, it is not restricted by current (or past) cycle offerings. The lists of values should be seen as comprehensive over time and can include filters, configs, modes, that are not offered to the general investigator.
- SPECTEL1/2 *: for instruments that only use one filter at a time, the one that is not taking data should be populated with “NONE”.
- We expect these lists to grow over time as SI teams add/change configs, filters, and modes. Anytime there are changes to the SI in these areas, the corresponding section of the SI-DCS ICD will need to be updated and the DCS team notified so that the archive search page can be updated to support the SI changes.

The SI team must provide specification for any instrument specific keywords that are required for data processing and calibration (including any keywords required for grouping data and what values they will need to have). Specification should include the keyword name, datatype, expected values (and/or range), and a short definition. These keywords are not parsed by the DCS archive, but will be used to validate Level 1 files in preparation for processing at the SSC.

8.1.2. Level 2 Data Product Requirements

Level 2 data products must also adhere to the SOFIA FITS keyword dictionary (Appendix C). In many cases the values of the keywords in the LEVEL_2 files can be carried forward from the LEVEL_1 files, but in some cases the pipeline will need to determine and update the values accordingly. Details listed in Appendix C.

In some cases, SI pipelines might produce different products as part of Level 2 processing. These will be distinguished using the PRODTYPE keyword; possible values must be specified in the SI-DCS ICD.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
The following information must be provided in the HISTORY keywords at the end of the header:

- List of input OBS_IDs for the input LEVEL_1 in the input manifest. This gives the GI or archive user a quick way of seeing what files were used to generate the LEVEL_2 product.
- List of any auxiliary data products used.
- List of processing steps completed and any errors encountered.

8.1.3. Level 3 Data Product Requirements

Level 3 data products must adhere to the same requirements as Level 2. In addition, the Level 3 products must:

- Provide imaging flux calibration information in the FITS header using standard conventions (e.g. BSCALE, BZERO, and BUNIT); pixel values in the image should not be changed.
- Provide spectroscopic flux calibration information by appending a calibration spectrum (cal factors vs. wavelength) to the Level 2 data; pixel values in the image should not be changed.
- Provide a reference to the mission calibration file used in the HISTORY keywords.

8.1.4. Level 4 Data Product Requirements (TBD)

TBD

8.2. Science Instrument Metadata (Keywords)

8.2.1. Overview

All science data files submitted by the SI teams to the DCS for archiving must be in FITS format and adhere to the FITS Standard (v3.0, 10 July 2008). The SI FITS file headers shall contain the required and conditionally required keywords and values specified in the FITS Keyword Dictionary (Appendix C) that are needed for archive ingestion, data processing, and archive search. Note that not all of the keywords in the list are required to be present in every FITS file submitted for archiving (see the “Is Required” condition column).

The SI FITS file headers shall contain the instrument-unique SI keywords and values that are defined in the instrument-specific SI-to-DCS ICD that are needed for data processing, reduction, and calibration.

The SI-to-DCS ICD should contain a description of the SI data files that will be archived post flight, including any ancillary files. The description must also include specification of the values to be used for the INSTRUME, INSTCFG, INSTMODE, SPECTEL1/2, and SLIT (if applicable) keywords (see Section 2).

Also note that the SOFIA Archive has a download limit of no less than 30 GB (contact DCS development team for current value). Therefore any single file produced by the science

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
instrument that exceeds this value can not be retrieved from the DCS archive. If the SI team expects to produce files larger than the download limit, they should notify the DCS development team so that the download limit can be increased (or other provisions made).

8.2.2. Science Instrument Observation Keywords
The primary interface between an SI and the DCS Archive is the metadata, or keywords, used to describe the science data produced by the SI. These keywords are controlled with a keyword dictionary which was initially developed by the SOFIA Archive Development Team at UCLA. This dictionary began through consultations with the HAWC, AIRES and FLITECAM instrument teams and borrows heavily from their early keyword lists. Respecting the instrumental perspective we have tailored the keyword dictionary to:

- be as transparent and user friendly as possible, for the general observer who will be referring to these keywords in data headers,
- facilitate straight-forward data reduction and, for the facility instruments, data pipelining,
- allow for efficient searches on the SOFIA database, in keeping with our evolving design of the SOFIA data archive, and
- institute commonality in the choice of keywords so that translations can be avoided when software is shared between instruments.

In offering a set of common keywords, we are aiming to unify the choices of parameter names so that users of multiple instruments on SOFIA will need to learn only one set, so that software can be shared between groups using different instruments, and so that we have a coherent set of database referents in the archive.

During development of these keywords, we have tried to accommodate alternative ways of taking or storing data. For example, we have not made any choices about whether an image is to be stored as a normal FITS file or as a binary extension table in a FITS file. Time of sample for any keyword value is assumed to be at the start of data acquisition unless otherwise specified. The keyword dictionary and additional specifications are given in §D.1. We have tried to adopt standard FITS keywords whenever possible and to follow common usage as laid out in the NOAO Keyword Dictionary\(^1\). We recommend instrument developers consult this dictionary for their instrument specific keywords as well. As always, any input regarding the keywords is welcome.

8.2.3. Unique Identifiers for SOFIA Observations
Currently there are two unique identifiers for every SOFIA science observation: AORUniqueID and ObservationID (FITS: AOR_ID, OBS_ID). The relationship and specification of each is discussed below.

The AORID is assigned by the DCS during the creation of an Astronomical Observation Request (AOR) in the observation planning process. If the current observation is not associated with an AOR, then this keyword is not required.

\(^1\) http://iraf.noao.edu/iraf/web/projects/ccdmosaic/imagedef/fitsdic.html
The Observation ID is a unique identifier for any given data file, meant to provide ready timing and sequencing information at a glance to the user. It is created at the same time that the data file is first written, in a format common to all instruments (and thus mandated by the observatory). The OBSID is assigned to saved datasets only. Some test data may be taken during a flight for immediate diagnostic purposes, but not saved (e.g., a snapshot to verify pointing), in which case there would be no point in assigning an OBSID, but we note that the default should almost always be to save the data and thus assign this keyword. See the Keyword dictionary listing for the specification of OBSID.

The OBSID number is distinct from the AORID. The AORID is the unique identifier for an AOR which can, in principle, generate multiple files to be saved. Each of these files would have a unique OBSID. The mapping from AORID to OBSID is one-to-many, i.e., one AOR can produce multiple data files. Note that the converse is not true—one data file cannot be the product of multiple AORs.

All recorded data files would have an OBSID, even if the data are judged to be bad. This allows for later second opinions, or for the resurrection of marginal, but time-critical data. Another keyword, DATAQUAL, is under development to describe data quality.

8.2.4. Data File Structure and Organization

Every science data file submitted to the SOFIA archive must include (among other things) the ObservationID keyword (FITS: OBS ID) with a value which adheres to the unique identifiers specification (§7.2). Each file may have multiple images (e.g., FITS Extensions), indexed using the ImageID keyword, which constitute a single “observation”. We leave it to the SI teams and investigators to define what an “observation” means. For the FSI, this is largely set via the AOR/AOT concept. Therefore, a single data file may contain, for example:

- All chop/nod pairs of an observation as separate images;
- The target observation and any calibration observations (e.g., fluxcalibrators, flatfields);
- All the images in a dithering/mapping observation.

We also acknowledge that in many cases groups of images will be stored individually in separate files. In this case, the data files can be associated using the FileGroupID (FITS: FILEGPID) keyword, where all related files would be given the same value. The FileGroupID will be especially useful for map/dithered images stored as separate files to be combined later.

8.2.5. Condition

Each keyword has a condition associated with it which indicates when a particular keyword is required for ingestion into the archive. For example, if the data were collected while chopping (isChopping = T), then the set of chopping-related keywords and values would need to be present. If no condition is listed, then the keywords must be present in every FITS file submitted to the SOFIA archive. They are necessary to (1) uniquely identify the origin of the data, (2) produce primary search indices for the archive database, and (3) satisfy minimum summary information about an observation.
8.2.6. Telescope Pointing Coordinate Systems
The position of the SI boresight as returned by the MCCS in equatorial coordinates (i.e., where the telescope thinks it is pointing) is specified using the TELRA/DEC and TELEQUI keywords (ICRS J2000 is the default for MCCS). The SI will also need to supply the requested RA and Dec from the AOR (if applicable) using the OBSRA, OBSDEC and EQUINOX keywords.

8.2.7. World (Physical) Coordinate Systems
Application of a world, or physical, coordinate system (WCS) to a dataset is usually accomplished by specifying for each axis; units, a reference pixel, a value for the reference pixel, the relative pixel separation in the specified units (which can be non-linear), and a rotation. In FITS headers these relations are usually specified with the keywords CTYPEn, CRPIXn, CRVALn, and the rotation matrix elements CDi_j (or alternatively, the older convention keywords CDELTn and CROTA n), where n is the axis index. For WCS transformations, we recommend the use of these keyword conventions as discussed in A User’s Guide for the Flexible Image Transport System (FITS)\(^2\). All SOFIA data must contain valid WCS keywords: the SI team may choose to implement either the CD matrix form, or the CDELT and CROTA form, but not both. The FITS comment field must also carry an uncertainty estimate for the following WCS keywords:

- CRVALn: Uncertainty in the telescope absolute pointing (see TBD Document).
- CDi_j: Uncertainty for each element in the rotation matrix. This is really a combination of the uncertainty in the telescope rotation of field (see TBD document) and the uncertainty in the platescale across the detector.
- CROTA2: Uncertainty in the telescope rotation of field (see TBD Document).
- CDELTn: Uncertainty in the platescale, as determined by the SI team. Should account for distortion and other optical effects. If the data are distortion corrected, then this should include any fit errors.

8.2.8. Sources for Keyword Values
The listing in the dictionary for each keyword contains a source field which indicates where the value for that keyword can be obtained. Keywords with no source listed are provided by the SI directly. For Early Science, there is no computational interface for the Observing or Mission plans, therefore any values that are sourced from those plans must be configured at run-time or queried from the user at the time the FITS file is written.

For keywords that are sourced from MCCS Housekeeping (HK) data, the MCCS SI 04 should be consulted for additional clarifications. If the HK datanode is not available, or returns “NotFound“ (or any other error), then the following values should be used to populate the corresponding FITS keyword based on the FITS keyword data type (float, int, string, boolean):

- FLOAT -9999
- INT -9999
- STRING UNKNOWN
- BOOL No blanket value; must be defined for each keyword

In addition, a note should be inserted into the keyword comment line indicating that there was an error accessing the MCCS HK data item.

8.2.9. Required Keywords
If any of the required keywords are missing (or have the wrong datatype) the DCS archive will issue an error report indicating which files are non-compliant and which keyword(s) are missing. In most cases, the files will still be ingested into the archive and made available for download via the DCS webpages. Some keywords, however, are required for ingestion: if one of these keywords is missing, the host file will not be available until the header is corrected. The following keywords are absolutely required for archive ingestion:

- DATASRC
- OBS_ID
- MISSN_ID
- DATE_OBS
- INSTRUME
- SPECTEL1
- SPECTEL2

See Appendix for keyword requirements.

Non-compliant files can then be “checked-out” of the archive by SMO staff, updated, and then checked back in. On check-in, the database tables will be updated automatically with the new keyword values and the updated files made available for download.

8.2.10. Common FSI Keywords
Included here is list of common SI keywords and possible standardizations. These keywords have not been inducted into the dictionary, we are waiting for feedback from the SI teams.

- FLATFILE: Pointer to flatfile file. We might consider a whole group of calibration file pointers, e.g., FLATFILE, DARKFILE, LAMPFILE
- GAIN or EPERADU: Electrons per ADU (DN). Most instruments seem to have a specification for this so we should consider standardizing one.
- CAMMODE: Camera mode.
- DETBIAS: Detector bias voltage.
- SMPLFREQ: Detector sample frequency (alternative to COADDS).
- SMPLIMG: Detector samples per chop image (again, as an alternative to COADDS).
9. OBSERVATION PLAN

9.1. Description
The DCS generates and writes ObsPlans as XML data stored in (UTF-8) text files. Once a proposal submitted by a Guest Investigator to the DCS is approved, the proposal is turned into an ObsPlan. The ObsPlan contains general proposal information and a list of Astronomical Observation Request (AOR). Each AOR contains key information such as instrument, instrument mode, target, exposure time on the target and the overhead required to set up the pointing of the telescope.

The AORs are grouped together by the Cycle Scheduler to form the Observation Blocks (ObsBlock) list. The Flight Management Infrastructure (FMI) then plans flights based on the list of ObsBlock.

Only privileged users or internal software are allowed to access the observation plan.

9.2. Download ObsPlan using the DCS Web HTTPS
To download an ObsPlan from DCS, the FMI opens an HTTPS connection, and passes the ObsPlan ID string to the DCS. The server returns the status and the ObsPlan data if successful.

- **URL:** https://[DCSWEBHOST]/observationPlanning/DbProxy/getObsPlan.jsp
- **Input parameters**
 - *id* String – ObsPlan ID
- **Output:** XML string that contains the return value of the call. If it is a success, the xml contains the ObsPlan xml. If permission is designed, the user must log in first.
 - **Success:** String (XML)
 - `<ObservingPlan>...</ObservingPlan>`
 - **Error:** String
 - NOSUCHOBSPLAN
 - INTERNALERROR
 - PERMISSIONDENIED
- **Permission:** Only the following roles can get an ObsPlan
 - GI or Co-I who owns this ObsPlan
 - SMO

9.3. Download Proposal ID List using the DCS Web HTTPS
Downloading proposal ID List
- **URL:** https://[DCSWEBHOST]/observationPlanning/DbProxy/GetProposalIDList.jsp
- **Input parameters**
 - *cycle* String – Proposal Cycle ID
- **Output:** XML string that contains the return value of the call. If it is a success, the xml contains the PropIdList xml. If permission is designed, the user must log in first.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
Success: String (XML)
- `<ObsPlanDbResponse>`
 `<PropIdList>`
 `<PropID>nn_nnnn</PropID>`
 ...
 `<PropIdList>`
 `<Retval>SUCCESS</Retval>`
 `<CriteriaFound>CYCLE</CriteriaFound>`
 `/ObsPlanDbResponse`

Error: String (XML)
- Permission Denied
 `<ObsPlanDbResponse>`
 `<PropIdList/>`
 `<Retval>Permission Denied.</Retval>`
 `<CriteriaFound>CYCLE</CriteriaFound>`
 `/ObsPlanDbResponse`
- System Error
 `<ObsPlanDbResponse>`
 `<PropIdList/>`
 `<Retval>DCS system error, and please try again later.</Retval>`
 `<CriteriaFound>CYCLE</CriteriaFound>`
 `/ObsPlanDbResponse`

- Permission: Only the following roles can get an ObsPlan
 - GI or Co-I who owns this ObsPlan
 - SMO

9.4. Download Proposals using the DCS Web HTTPS (Deprecated)

This interface is no longer supported. Instead, use the GetProposalIDList.jsp and getObsPlan.jsp.

Downloading proposals (not approved yet) from DCS is very similar to downloading the ObsPlans. The difference is that instead using getObsPlan.jsp, it calls getPropCover.jsp to get the proposal cover XML. To do this, the Cycle Scheduler (CS) or Short Term Cycle Scheduler (STS) opens an HTTPS connection, and passes the proposal ID string to the DCS. The server returns the status and the Proposal data if successful.

- **URL**: `https://[DCSWEBHOST]/observationPlanning/DbProxy/getPropCover.jsp`
- **Input parameters**
 - `id` String – Proposal ID
- **Output**: If it is a success, the xml contains the ProposalCover xml. The ProposalCover and ObsPlan XML definition are the same except the root element. If the caller does not have the right privilege, the server returns “Permission Denied” response. In this case, the user must log in with the right privilege first.
- Only the following roles can get a proposal.
9.5. Obsplan XML DTD Definition

<!-- Content for an ObservingPlan -->
<!-- add boolean flag IsLocked element to indicate ObsPlan status. If IsLocked is set
then the ObsPlan cannot be edited -->
<!-- add boolean flag MustDo element for SPR1635 -->
<!-- SPR2812 change MustDO to Priority 2017 May-->
<!ELEMENT ObservingPlan (ObsPlanID, PropCycleID, Proposal, Investigator+, ProposedObservation+,SSMOCScientist?, Note*, IsLocked?, Priority?)>
<!-- add completionrate attribute that represents completion rate (0.00 - 1.00)
of AORs have been DONE i.e.
completionrate = Sum(AORState.Done)/Sum(proposedobservation) -->
<!-- State can be either PENDING, PROBLEM, or APPROVED -->
<!ATTLIST ObservingPlan phase (Skeletal | Populated | FullySpecified | Refined) #REQUIRED
lastdatamod CDATA #REQUIRED
lastphasemod CDATA #REQUIRED
completionrate CDATA #IMPLIED
state CDATA #IMPLIED>
<!comment out version CDATA #FIXED "2" for now -->
<!ELEMENT ObsPlanID (#PCDATA)>
<!ELEMENT PropCycleID (#PCDATA)>
<!ELEMENT ProposalCover (Proposal, Investigator+, ProposedObservation+)>
<!-- 2018 May added IsThesis -->
<!ELEMENT Proposal (PropID, Title, Category, ScienceKeywords, ProposalAbstract,TotalObsDuration, isQueue?, isService?, isTOO?, IsImpact?,isSurvey?, PropDocURI?, SpecialInstructions?, AwardedTime?, IsThesis?)>
<!-- add SMOMember -->
<!ATTLIST Proposal TACQueue CDATA #IMPLIED
datesubmitted CDATA #IMPLIED
TACGrade CDATA #IMPLIED
TACMember CDATA #IMPLIED
status (Pending | Approved | Declined) #REQUIRED
SMOMember CDATA #IMPLIED>
<!ELEMENT PropID (#PCDATA)>
<!ELEMENT SpecialInstructions (#PCDATA)>
<!ELEMENT ScienceKeywords (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Category (#PCDATA)>
<!ELEMENT TotalObsDuration (#PCDATA)>
<!!-- Seconds -->
<!ELEMENT ProposalAbstract (#PCDATA)>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
<!ELEMENT PropDocURI (#PCDATA) >
<!-- Observation scheduling modes. Boolean flags -->
<!ELEMENT isQueue EMPTY >
<!ELEMENT isService EMPTY >
<!ELEMENT isTOO EMPTY >
<!ELEMENT IsImpact EMPTY >
<!ELEMENT isSurvey EMPTY >
<!ELEMENT IsThesis EMPTY >
<!ELEMENT AwardedTime (#PCDATA) >
<!-- Seconds -->
<!ELEMENT Investigator (Primary?,Identity,Address?,Email?,Phone?,Website?)>
<!ELEMENT Primary EMPTY >
<!ELEMENT DCSUserName (#PCDATA)>
<!ELEMENT Identity (DCSUserName?)>
<!ATTLIST Identity
 FirstName CDATA #REQUIRED
 LastName CDATA #REQUIRED
 MiddleInitial CDATA #IMPLIED
 Honorific CDATA #IMPLIED
 Suffix CDATA #IMPLIED
 JobTitle CDATA #IMPLIED
 Institution CDATA #REQUIRED>
<!ELEMENT Address EMPTY>
<!ATTLIST Address
 Street1 CDATA #IMPLIED
 Street2 CDATA #IMPLIED
 City CDATA #IMPLIED
 State CDATA #IMPLIED
 Country CDATA #IMPLIED
 Postcode CDATA #IMPLIED>
<!ELEMENT Phone EMPTY>
<!ATTLIST Phone
 HomePhone CDATA #IMPLIED
 OfficePhone CDATA #IMPLIED
 CellPhone CDATA #IMPLIED
 Fax CDATA #IMPLIED>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Website (#PCDATA)>
<!-- An ObservingPlan must have one or more ProposedObservations. This information will be used for first AOR creation. Add AORState element to indicate AOR state. AORState can be either NEW, READY, PROBLEM or DONE Add boolean flag IsNewObservation element to indicate that the observation was added during the phase 2 planning isComplete indicate whether the ProposedObservation has been observed and archived -->
<!ELEMENT ProposedObservation
<!-- WaterVapor and watervapor_max mapping between SPT and Proposal Cover XML low = 5.0 microns medium = 10.0 microns otherwise = NaN

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
altitude_min: feet
elevation_min: degrees

<!ATTLIST ProposedObservation
 order CDATA #IMPLIED
 priority CDATA #IMPLIED
 watervapor_max CDATA #IMPLIED
 altitude_min CDATA #IMPLIED
 elevation_min CDATA #IMPLIED
 key CDATA #IMPLIED>

<!ELEMENT ObservationNumber (#PCDATA)> <!-- Serial number (by ObsPlan) for proposed observations. -->
<!ELEMENT MapArea (#PCDATA) > <!-- Square arcmin, 0 for single pointing -->
<!ELEMENT Duration (#PCDATA) > <!-- Seconds -->
<!ELEMENT Overhead (#PCDATA) > <!-- Seconds -->
<!ELEMENT isCalibrator EMPTY > <!-- Is the proposed observation for calibration? Boolean flag. -->

<!ELEMENT IsExtraTime 2018 May-->
<!ELEMENT IsExtraTime EMPTY > <!-- Boolean flag -->

<!ELEMENT AORID (#PCDATA) >
<!ELEMENT ObservationID (#PCDATA) >
<!ELEMENT Comments (#PCDATA) >
<!ELEMENT Timing (After_UTDate?, Before_UTDate?)* >
<!ELEMENT Before_UTDate (#PCDATA) >
<!ELEMENT After_UTDate (#PCDATA) >
<!ELEMENT AstroObject (AstroObjectName, AstroObjectType, ObservationCenter, ProperMotion?, Velocity?, Guidestar*) >
<!ELEMENT AstroObjectType (#PCDATA) >
<!ELEMENT AstroObjectName (#PCDATA) >
<!ELEMENT ObservationCenter (Sidereal | NonSidereal)>
<!ELEMENT Sidereal (RA, Dec, Equinox) >
<!ELEMENT Dec (#PCDATA)> <!-- decimal degrees -->
<!ELEMENT RA (#PCDATA)> <!-- decimal hours -->
<!ELEMENT NonSidereal (NAIF_ID | OrbitalElements | (RA,Dec,Equinox))>
<!ELEMENT OrbitalElements (Epoch, PerihelionDistance, Eccentricity, Inclination, littleOmega, BigOmega, PerihelionDay)>
<!ELEMENT NAIF_ID (#PCDATA)>
<!ELEMENT PerihelionDistance (#PCDATA)>> <!-- Units: AU -->
<!ELEMENT Eccentricity (#PCDATA)>
<!ELEMENT Inclination (#PCDATA)>> <!-- UnitS: degrees -->

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
<!ELEMENT littleOmega (#PCDATA)>
<!ELEMENT BigOmega (#PCDATA)>
<!ELEMENT PerihelionDay (#PCDATA)>
<!ELEMENT Epoch (#PCDATA)>
<!ELEMENT Equinox (J2000)>
<!ELEMENT J2000 EMPTY >
<!ELEMENT ProperMotion (PropMotnRA, PropMotnDec) >
<!ELEMENT PropMotnRA (#PCDATA) > <!-- arcsec/yr -->
<!ELEMENT PropMotnDec (#PCDATA) > <!-- arcsec/yr -->

<!ELEMENT Frequency (#PCDATA) >
<!ELEMENT Frequency2 (#PCDATA) >
<!ELEMENT Velocity (#PCDATA) >
<!ATTLIST Velocity ref (helio | lsr | z) #REQUIRED >
<!ATTLIST Guidestar Imager (FPI-SCI | FPI-T0 | FFI | WFI) #REQUIRED >
<!ATTLIST Guidestar Catalog (UCAC4 | HIPPARCOS) #REQUIRED >
<!ATTLIST Guidestar Radius CDATA #IMPLIED >
<!ATTLIST GuidestarMagnitude2 Type CDATA #IMPLIED >
<!ATTLIST GuidestarMagnitude Type CDATA #IMPLIED >
<!ATTLIST IsLocked EMPTY >
<!ATTLIST FlightManagement PlannedExecution?)>
<!ATTLIST FlightManagement InstRunID CDATA #REQUIRED >
<!ATTLIST SSMOCScientist CDATA #IMPLIED >
<!ATTLIST DependentObs key CDATA #IMPLIED >
<!ATTLIST Doc_Link CDATA #IMPLIED >

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
9.6. **Obsplan XML DTD Description**

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>lastdatamod</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>lastphasemod</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>completionrate</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>state</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>ObsPlanID</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>PropCycleID</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>Proposal</td>
<td>Element{1}</td>
<td>See Below</td>
</tr>
<tr>
<td>Investigator</td>
<td>Element{1,N}</td>
<td>See Below</td>
</tr>
</tbody>
</table>

 vera秘书 你已经让这是一次正确的修订，然后才能使用。
<table>
<thead>
<tr>
<th>ProposedObservation</th>
<th>Element{1,N}</th>
<th>See Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMOCScientist</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>Note</td>
<td>Element{0,N}</td>
<td>Text, See Below</td>
</tr>
<tr>
<td>IsLocked</td>
<td>Element{Opt}</td>
<td>EMPTY</td>
</tr>
<tr>
<td>Priority</td>
<td>Element{1}</td>
<td>TEXT</td>
</tr>
</tbody>
</table>

phase: - The phase the proposal is at. It has one of the following values:
- Skeletal
- Populated
- FullySpecified
- Refined

lastdatamod: The last time the ObsPlan was changed, e.g. 2012-09-03 22:47:19.0

lastphasemod: The last time the phase was changed, e.g. 2012-09-03 22:47:19.0

completionrate: The rate of completion, fraction of number of AORs that are in DONE state with regard to the total number of AORs. This value ranges from 0.00-1.00.

state: The state of this ObsPlan. The list of states are described in the state diagram (in the DCS Software Architectural Design Document SCI-US-SPE-SW02-2008)

ObsPlanID: The ID of the ObsPlan, it is the same as the proposal ID and has the form of CC_XXXX. CC is the SOFIA proposal cycle ID, XXXX is a serial number assigned to a single proposal.

PropCycleID: ID of a proposal Cycle (01, 02, etc.).

Proposal: The contents of the proposal.

Investigator: The investigator of this proposal. A proposal can have more than one Investigator.

ProposedObservation: The observation in the proposal. There can be any number of observations in a proposal. Each ProposedObservation is one AOR.

SSMOCScientist: SSMOC scientists assigned to review this proposal. It is a comma delimited string that includes multiple users.

Note: Proposal review notes.

IsLocked: An empty element indicating whether this ObsPlan is locked or not. If locked, then the GIs will not be allowed to upload their AORs.
MustDo (deprecated, replaced by Priority): An empty element indicating that this ObsPlan must be planned for flight.

Priority: Priority of a proposal assigned by TAC, values can be “Will Do, Should Do, Do if Time, Survey”. Conversion of the values in the existing ”MustDo” to “Priority” mapping is:

1. Will Do
2. Should Do: MustDo==TRUE
3. Do if Time: MustDo==FALSE and Survey==FALSE
4. Survey: MustDo==FALSE and Survey==TRUE

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>See Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProposalCover</td>
<td>Element{1}</td>
<td></td>
</tr>
<tr>
<td>Investigator</td>
<td>Element{1,N}</td>
<td></td>
</tr>
<tr>
<td>ProposedObservation</td>
<td>Element{1,N}</td>
<td></td>
</tr>
</tbody>
</table>

The ProposalCover element is used to contain information about the proposal before a proposal is approved.

Proposal: see Proposal under ObservingPlan.

Investigator: see Investigator under ObservingPlan.

ProposedObservation: see ProposedObservation under ObservingPlan.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>See Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACQueue</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>datesubmitted</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>TACGrade</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>TACMember</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>status</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>SMOMember</td>
<td>Attribute</td>
<td>Text</td>
</tr>
<tr>
<td>PropID</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>SpecialInstructions</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>ScienceKeywords</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>Title</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>Category</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>TotalObsDuration</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>ProposalAbstract</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
</tbody>
</table>
TACQueue: Which TACQueue this proposal belongs to, it can be “US” or “DE”.

datesubmitted: The date when the proposal was submitted.

TACGrade: The grade that the TAC assigns to the proposal. (Numeric number between 0 and 5)

TACMember: The TAC member that is assigned to rate this proposal.

status: The status of this proposal. The status can be Pending or Approved or Declined.

SMOMember: SMO member that are assigned to review this proposal.

PropID: The ID of this proposal. It is the same as the ObsPlanID.

SpecialInstructions: Special instructions on this proposal.

ScienceKeywords: The science keywords for this proposal.

Title: The title of this proposal.

Category: The category of the targets.

TotalObsDuration: The total duration of this proposal, including exposure time and overhead.

ProposalAbstract: The abstract of this proposal.

PropDocURI: The location of the proposal file stored on the server.

isQueue: An empty element indicating whether this proposal is a Queued proposal.

isService: An empty element indicating whether this proposal is a Service proposal.

isTOO: An empty element indicating whether this proposal is a Target of Opportunity proposal.

IsImpact: An empty element indicating whether this proposal is an Impact proposal, these proposals are usually large and require more than one cycle)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE

35
isSurvey: An empty element indicating whether this proposal is a Survey proposal.

AwardedTime: The total time awarded to this proposal, in minutes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Identity</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Address</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Email</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Phone</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Website</td>
<td>Element{Opt}</td>
</tr>
</tbody>
</table>

Primary: An empty element indicating whether this is a primary investigator. Only one investigator can be the primary, the rest are co-investigators.

Identity: The identity of this investigator.

Address: The address of this investigator.

Email: The email provided by this investigator for contacting purpose. This can be the same email address the user uses to register with the DCS, but not necessary.

Phone: The phone number of this investigator.

Website: The web site provided by this investigator.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstName</td>
<td>Attribute</td>
</tr>
<tr>
<td>LastName</td>
<td>Attribute</td>
</tr>
<tr>
<td>MiddleInitial</td>
<td>Attribute</td>
</tr>
<tr>
<td>Honorific</td>
<td>Attribute</td>
</tr>
<tr>
<td>Suffix</td>
<td>Attribute</td>
</tr>
<tr>
<td>JobTitle</td>
<td>Attribute</td>
</tr>
<tr>
<td>Institution</td>
<td>Attribute</td>
</tr>
<tr>
<td>DCSUserName</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

FirstName: The first name of the investigator. It can be used to search ObsPlan and archives on the DCS web.
LastName: The last name of the investigator. It can be used to search ObsPlan and archives on the DCS web.

MiddleInitial: The middle initial of the investigator.

Honorific: The honorific of the investigator.

Suffix: The suffix of the investigator.

JobTitle: The job title of the investigator.

Institution: The institution of the investigator.

DCSUserName: The account user name that the user has registered with the DCS. This user name is used to determine access to various web pages, such as searching ObsPlan, AORs, and archives.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street1</td>
<td>Attribute</td>
</tr>
<tr>
<td>Street2</td>
<td>Attribute</td>
</tr>
<tr>
<td>City</td>
<td>Attribute</td>
</tr>
<tr>
<td>State</td>
<td>Attribute</td>
</tr>
<tr>
<td>Country</td>
<td>Attribute</td>
</tr>
<tr>
<td>Postcode</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HomePhone</td>
<td>Attribute</td>
</tr>
<tr>
<td>OfficePhone</td>
<td>Attribute</td>
</tr>
<tr>
<td>CellPhone</td>
<td>Attribute</td>
</tr>
<tr>
<td>Fax</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>order</td>
<td>Attribute</td>
</tr>
<tr>
<td>priority</td>
<td>Attribute</td>
</tr>
<tr>
<td>watervapor_max</td>
<td>Attribute</td>
</tr>
<tr>
<td>altitude_min</td>
<td>Attribute</td>
</tr>
<tr>
<td>elevation_min</td>
<td>Attribute</td>
</tr>
<tr>
<td>key</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE

37
<table>
<thead>
<tr>
<th>ObservationNumber</th>
<th>Element{1}</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Element{1}</td>
<td>See Below</td>
</tr>
<tr>
<td>Duration</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>Overhead</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>IsExtraTime</td>
<td>Element{Opt}</td>
<td>See Below</td>
</tr>
<tr>
<td>MapArea</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td>AstroObject</td>
<td>Element{1}</td>
<td>See Below</td>
</tr>
<tr>
<td>Timing</td>
<td>Element{Opt}</td>
<td>See Below</td>
</tr>
<tr>
<td>isCalibrator</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>isTimeCritical</td>
<td>Element{Opt}</td>
<td>See Below</td>
</tr>
<tr>
<td>AORID</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>DependentObs</td>
<td>Element{Opt}</td>
<td>See Below</td>
</tr>
<tr>
<td>Comments</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>ObservationID</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>FlightManagement</td>
<td>Element{Opt}</td>
<td>See Below</td>
</tr>
<tr>
<td>isComplete</td>
<td>Element{Opt}</td>
<td>EMPTY</td>
</tr>
<tr>
<td>Duplicate</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>AORState</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>isNewObservation</td>
<td>Element{Opt}</td>
<td>EMPTY</td>
</tr>
<tr>
<td>MinimumContiguous Time</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td>AORExeDates</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
</tbody>
</table>

ProposedObservation: A proposed observation is an AOR.

order: The order of this AOR. It is an integer. Multiple AORs can have the same order, which means orders are not important.

priority: The priority of this AOR. It can be 1 (high) or 2 (medium) or 3 (low).

watervapor_max: The maximum water vapor tolerance for this AOR. It can be high (> 10 micron), medium (between 5 and 10 micron), and low (<5 micron).

altitude_min: The minimum altitude this AOR should be observed at, in feet.

elevation_min: The minimum elevation this AOR should be observed at, in degree.

key: The observation key assigned to this AOR. A unique id assigned to this AOR by the DCS server database. It is the same as an AOR ID.

ObservationNumber: A serial number assigned to this AOR.
Instrument: The instrument to be used for this observation.

Duration: Duration of this observation, including integration time and overhead.

Overhead: The overhead of this observation.

IsExtraTime: If present, the AOR is a Redo AOR.

MapArea: The map area of this observation if this is a mapping AOR. For single pointing, the value is set to 0.

AstroObject: The target of this observation.

Timing: An id of the timing constraint.

isCalibrator: An empty element indicating if this is a calibration AOR.

isTimeCritical: Contains one or more Timing definitions indicating the time constraints required for this observation. The Timing defines the time period in which this observation should be carried out.

AORID: The ID assigned to the AOR. It has the form of [ObsPlanID]_[ObservationNumber].

DependentObs: Other AOR this observation depends on.

Comments: The comments regarding this observation.

ObservationID: A unique id assigned to this observation, it is not the same as AOR ID.

FlightManagement: Contains the flight plan info for this AOR.

isComplete: An empty element indicating whether or not this AOR has been completed.

Duplicate: The AOR ID of an AOR that this AOR is duplicate of.

AORState: AORState can be NEW, READY, PROBLEM or DONE.

isNewObservation: An empty element indicating that the observation was added during the phase 2 planning.

MinimumContiguousTime: The minimum contiguous time to maintain for observation if this AOR must be split into multiple flights.

AOR_exeDates: The dates when this AOR was observed. This data is populated after the archive receives the data. It can be multiple dates, e.g. 2014-05-01 2014-05-08

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Attribute</td>
</tr>
<tr>
<td>Config</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Mode</td>
<td>Element{1}</td>
</tr>
<tr>
<td>SpectralElement</td>
<td>Element{1}</td>
</tr>
<tr>
<td>SpectralElement2</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Slit</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Wavelength2</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Frequency</td>
<td>Element{Opt}</td>
</tr>
<tr>
<td>Frequency2</td>
<td>Element{Opt}</td>
</tr>
</tbody>
</table>

Name: The name of the instrument.

Config: The configuration of the instrument.

Mode: The observing mode of the telescope, e.g. C2NC2, STARE.

SpectralElement: The spectral element 1 to use for this AOR.

SpectralElement2: The spectral element 2 to use for this AOR.

Slit: The slit to use for this AOR.

Wavelength: The wavelength to use for spectral element 1.

Wavelength2: The wavelength to use for spectral element 2.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>range</td>
<td>Attribute</td>
</tr>
<tr>
<td>Wavelength2</td>
<td>range</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

range: Range of the wavelength , in microns.

Frequency: The frequency to use for spectral element 1.

Frequency2: The frequency to use for spectral element 2.
isTimeCritical | Timing | Attribute | Text

Timing: The timing constraints are defined in the Timing element.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before_UTDate</td>
<td>Element{1}</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>After_UTDate</td>
<td>Element{1}</td>
<td>Text</td>
<td></td>
</tr>
</tbody>
</table>

Before_UTDate: The observation should happen before this date, in YYYY-MM-DD
After_UTDate: The observation should happen after this date, in YYYY-MM-DD

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstroObjectName</td>
<td>Element{1}</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>AstroObjectType</td>
<td>Element{1}</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>ObservationCenter</td>
<td>Element{1}</td>
<td>See Below</td>
<td></td>
</tr>
<tr>
<td>ProperMotion</td>
<td>Element{Opt}</td>
<td>See Below</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>Element{Opt}</td>
<td>Text</td>
<td></td>
</tr>
</tbody>
</table>

AstroObjectName: The name of the observation target.
AstroObjectType: The type of the observation target.
ObservationCenter: The center of the observation.
ProperMotion: The proper motion of the target.
Velocity: The velocity of the target, in km/s if ref is helio or lrs, no units if ref is z

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>ref</td>
<td>Attribute</td>
<td>Text</td>
</tr>
</tbody>
</table>

ref: Reference of the velocity, it can be either helio or lsr or z.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObservationCenter</td>
<td>Sidereal</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>NonSidereal</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
</tbody>
</table>

Sidereal: Sidereal target.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
NonSidereal: Non-Sidereal target, including planets, asteroid, orbital elements.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Dec</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Equinox</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

RA: Right ascension, in decimal hours.

Dec: Declination, in decimal degree.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIF_ID</td>
<td>Element{1}</td>
</tr>
<tr>
<td>OrbitalElements</td>
<td>Element{1}</td>
</tr>
<tr>
<td>RA</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Dec</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Equinox</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

NonSidereal can be defined as either a NAIF_ID or orbital element.

NAIF_ID: Navigation and Ancillary Information Facility (NAIF) assigned ID for an object.

OrbitalElements: are used to describe the motion of satellites within an orbit.

RA: Right ascension, in decimal hours.

Dec: Declination, in decimal hours.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Element{1}</td>
</tr>
<tr>
<td>PerihelionDistance</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Inclination</td>
<td>Element{1}</td>
</tr>
<tr>
<td>littleOmega</td>
<td>Element{1}</td>
</tr>
<tr>
<td>BigOmega</td>
<td>Element{1}</td>
</tr>
<tr>
<td>PerihelionDay</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
OrbitalElements is defined by 7 parameters:

Epoch: Epoch of the osculating elements, Julian date.

PerihelionDistance: Perihelion distance (AU).

Eccentricity: The eccentricity of the orbit.

Inclination: Inclination of orbit plane (DEG) with regard to J2000 ecliptic plane.

littleOmega: Argument of Perihelion (DEG) with regard to J2000 ecliptic/equinox. It is the angle (in the body's orbit plane) between the ascending node line and perihelion measured in the direction of the body's orbit. This angle is often denoted as lower-case omega (ω).

BigOmega: Longitude of Ascending Node (DEG) with regard to J2000 ecliptic/equinox. It is the angle between the reference X-direction (typically the vernal equinox) and the point at which the body passes up (north) through the reference plane. This angle is often denoted as capital omega (Ω).

PerihelionDay: Perihelion Julian Day Number.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Element{1}</th>
<th>EMPTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equinox</td>
<td>J2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Element{1}</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>PropMotion</td>
<td>PropMotnRA</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>PropMotnDec</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
</tbody>
</table>

PropMotnRA: Rate of angular change in RA over time, as observed from the center of mass of the Solar system, measured in arcsec/yr.

PropMotnDec: Rate of angular change in Dec over time, as observed from the center of mass of the Solar system, measured in arcsec/yr.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Element{1}</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>GuideStar</td>
<td>GuideStarName</td>
<td>Element{Opt}</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>GuideStarRA</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>GuideStarDec</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>GuideStarProperMotionRA</td>
<td>Element{1}</td>
<td>Text</td>
</tr>
</tbody>
</table>
GuideStars are results from querying a public database for guide stars within a 0.5 degree radius around the current observation position and (if possible) brighter than 13th magnitude. From the database list, select up to the five brightest stars within 4 arcminutes of the current observation position which are brighter than 14.0 magnitude for the Telescope Operators (FPI-TO) and 16.0 for Science (FPI-SCI). If there are no stars found, then select up to the five brightest stars within 0.5 degrees of the current observation position which are brighter than 9.0 magnitude (these are stars suitable for the FFI). The cut off values may change in the future if the tracking capability changes.

Each guide star is defined by the following parameters:

GuideStarName: Name of the guide star from catalog.

GuideStarRA: RA of the guide star, in decimal hours.

GuideStarDec: Dec of the guide star, decimal degrees.

GuideStarProperMotionRA: Proper motion of the Guide Star RA, in arcsec/yr

GuideStarProperMotionDec: Proper motion of the Guide Star Dec, in arcsec/yr

GuideStarBminusV: B-V is a value computed from B and V magnitudes retrieved from querying the database. If B and/or V is missing, then B-V is left blank.

Imager: FPI-SCI or FPI-TO or FFI or WFI is used for guide stars.

Catalog: Catalog used to query the guide stars, can be UCAC4 or HIPPARCOS

Radius: Radius used to search the guide stars in arcsec
key: The AOR ID of the AOR that this AOR depends on.

ObservationID: The ObsPlan ID of the dependent AOR.

isContiguous: An empty element indicating if this AOR and the dependent AOR are contiguous.

InstRunID: The instrument run ID of a flight plan for this AOR. (Obsolete)

PlannedExecution: The planned execution time for this AOR.

Doc_Link: The file path on the server that stores this ObsPlan.

10. FLIGHTMANAGEMENT MODULE

The FlightManagement Module defines a list of services provided by the DCS to search, upload, and retrieve flight planning data.

10.1. FlightManagement module Definition

10.1.1. Description

The CORBA module of FlightManagement contains the definition of FMView Object and the services this object provides.
module **FlightManagement** {
 interface **FMView** : ObsPlanDB::BaseAPI {
 typedef sequence<string> FlightPlanIDSeq;
 typedef sequence<octet> FlightPlanBinary;

 PDRetVal getObsBlockInfoList (
 in string obsPlanId,
 out string xml);

 PDRetVal getFlightPlanIDs (
 in string flightSeriesID,
 out FlightPlanIDSeq ids);

 PDRetVal getFlightPlanBinary (
 in string flightPlanID,
 out FlightPlanBinary fpdata);
 }
}

getObsBlockInfoList: Get ObsPlan Observation Blocks from the server for a particular ObsPlan ID. The return value is in the form of XML and is described in section “**ObsPlanObsBlockInfoList Definition**” below.

getFlightPlanIDs: Get a list of Flight Plan IDs for a specific FlightSeries ID.

getFlightPlanBinary: Get a Flight Plan binary file for a specific Flight Plan ID. The binary format is defined in FMI-MCCS ICD and is not part of the scope of this document.

11. OBSERVATION PLAN / OBSERVATION BLOCK INFO LIST

This section documents the retrieval and the contents of the ObsPlanObsBlockInfoList. There are two ways of getting a ObsBlockInfoList. One is through a CORBA call using the FlightManagement Module defined above. The other is using a web interface. Both methods return XML that contains the ObsBlockInfoList.

The definition of ObservationBlock is defined in the Cycle Scheduler ICD (SCI-US-ICD-SE03-2040) and is not part of the scope of this document.

11.1. CORBA interface

11.1.1. Retrieve ObsPlanObsBlockInfoList from DCS using CORBA call

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
module FlightManagement {
 PDRetVal getObsBlockInfoList(
 in string obsPlanId,
 out string xml);
}

11.2. HTTPS web server protocol

11.2.1. Download ObsPlanObsBlockInfoList from DCS

- To download ObsPlan Observation Blocks from the DCS, use URL:
 https://dcs.sofia.usra.edu/observationPlanning/DbProxy/GetObsPlanObsBlockInfoList.jsp
- Input parameter name: obsplanid
- Privilege: SMO, DCSAdmin, TACLead FPAdmin and CSAdmin only. Flight Planner can log in as FPAdmin to upload Flight Plans. CSAdmin can upload Cycle Schedules. A GI does not have privileges to see Flight Plan related data. The ObsBlockInfoList contains groups of AOR related data that will be used by the flight planner during flight planning.
- Output:
 - ObsPlanObsBlockInfoList XML – Success
 - Error Message
 - Permission Denied – GI or Public user
 - ObsPlanID cannot be empty – Bad input
 - No Matching Record – the given ObsPlanID doesn't exist in the database
 - ObsPlan exists, but it does not have Observation Block
 - DCS system error, and please try again later – Internal error occurs, e.g. DB connection failure

11.3. ObsPlanObsBlockInfoList Definition

- ObsPlanObsBlockInfoList DTD (2017-09-06)

```xml
<?xml version='1.0' encoding='UTF-8'?>

<!ELEMENT ObsPlanObsBlockInfoList (Retval,
  ObsBlockInfo*, PropID?)>
<!ELEMENT Retval (#PCDATA)>
<!ELEMENT PropID (#PCDATA)>

<!ELEMENT ObsBlockInfo (AORList, ExecutedDuration,
  PlannedDuration, RequestedDuration,
  ObservationCenter, Instrument, ObsBlockName,
  ObsBlockID, NoSplit?, MinimumDuration?, Links?,
  Comment?, ObsBlockPriority?)>
```

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
<!ELEMENT AORList (AOR)∗>
<!ELEMENT AOR (AORID, IsSpecial?, IsTimeCritical?)>
<!ELEMENT AORID (#PCDATA)>
<!-- add new Boolean flags -->
<!ELEMENT IsSpecial EMPTY >
<!ELEMENT IsTimeCritical EMPTY >
<!ELEMENT PlannedDuration (#PCDATA)>
<!ELEMENT ExecutedDuration (#PCDATA)>

<!ELEMENT RequestedDuration (#PCDATA)>
<!ELEMENT Instrument (Config)>
<!ATTLIST Instrument name CDATA #IMPLIED >
<!ELEMENT Config (#PCDATA)>

<!ELEMENT ObsBlockName (#PCDATA)>
<!ELEMENT ObsBlockID (#PCDATA)>

<!ELEMENT ObservationCenter (Sidereal | NonSidereal)>
<!ELEMENT Sidereal (RA, Dec, Equinox) >
<!ELEMENT RA (#PCDATA)>
<!ELEMENT Dec (#PCDATA)>
<!ELEMENT Equinox (#PCDATA)>

<!ELEMENT NonSidereal (NAIFID | OrbitalElements)>
<!ELEMENT NAIFID (#PCDATA)>
<!ELEMENT OrbitalElements (Epoch, PerihelionDistance, Eccentricity, Inclination, LittleOmega, BigOmega, PerihelionDay)>
<!ELEMENT Epoch (#PCDATA)>
<!ELEMENT PerihelionDistance (#PCDATA)>
<!ELEMENT Eccentricity (#PCDATA)>
<!ELEMENT Inclination (#PCDATA)>
<!ELEMENT LittleOmega (#PCDATA)>
<!ELEMENT BigOmega (#PCDATA)>
<!ELEMENT PerihelionDay (#PCDATA)>
<!ELEMENT NoSplit EMPTY >
<!ELEMENT MinimumDuration (#PCDATA)>
<!ELEMENT Comment (#PCDATA)>
<!ELEMENT Links (#PCDATA)> <!-- a list of ObsBlkIDs separated by COMMA, e.g. OB_05_0013_01,OB_90_0013_02,OB_90_0013_03 -->
<!ELEMENT ObsBlockPriority (#PCDATA)>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
11.4. ObsPlanObsBlockInfoList Description

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retval</td>
<td>Element{1}</td>
</tr>
<tr>
<td>ObsBlockInfo</td>
<td>Element{0,N}</td>
</tr>
<tr>
<td>PropID</td>
<td>Element{Opt}</td>
</tr>
</tbody>
</table>

Retval: The status of the **getObsBlockInfoList** method. If using a web interface, a login is required before making the call. The values can be one of the following:

- **Permission Denied**

 <Retval>Permission Denied.</Retval>

- **No Matching Record**

 <Retval>No Matching Record Found.</Retval>

- **ObsPlan exists, but it does not have observation block**

 <Retval>No Observation Block is found for ObsPlan 01_0072</Retval>

- **Success**

 <Retval>SUCCESS</Retval>

ObsBlockInfo: Information about a specific ObsBlock. The ObsBlock is a group of AORs that have similar pointing.

PropID: Proposal ID.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AORList</td>
<td>Element{1}</td>
</tr>
<tr>
<td>PercentExecuted</td>
<td>Element{1}</td>
</tr>
<tr>
<td>PercentPlanned</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Duration</td>
<td>Element{1}</td>
</tr>
<tr>
<td>ObservationCenter</td>
<td>Element{1}</td>
</tr>
<tr>
<td>Instrument</td>
<td>Element{1}</td>
</tr>
<tr>
<td>ObsBlockName</td>
<td>Element{1}</td>
</tr>
<tr>
<td>ObsBlockID</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
AORList: List of AOR ID.

PercentExecuted: Percent of AORs executed.

PercentPlanned: Percent of AORs flight planned.

ObservationCenter: The target of the observation. It could be a fixed target (sidereal) or a moving target (non-sidereal).

Instrument: The instrument used for this observation.

ObsBlockName: Name of this ObsBlock.

ObsBlockID: ID of this Observation ObsBlock.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AORList</td>
<td>AOR</td>
</tr>
<tr>
<td></td>
<td>Element{0,N}</td>
</tr>
</tbody>
</table>

AORList contains of a list of AORs.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOR</td>
<td>AORID</td>
</tr>
<tr>
<td></td>
<td>Element{1}</td>
</tr>
<tr>
<td></td>
<td>IsTimeCritical</td>
</tr>
<tr>
<td></td>
<td>IsSpecial</td>
</tr>
</tbody>
</table>

AORID: AOR ID.

IsSpecial: If present, the AOR is a special observation.

IsTimeCritical: If present, the AOR has time constraints.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>Attribute</td>
</tr>
<tr>
<td>Config</td>
<td>Element{1}</td>
</tr>
</tbody>
</table>

name: Name of the instrument
Config: Instrument Configuration

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObservationCenter</td>
<td>Sidereal</td>
</tr>
<tr>
<td></td>
<td>Sidereal</td>
</tr>
<tr>
<td></td>
<td>NonSidereal</td>
</tr>
</tbody>
</table>

ObservationCenter can be either a Sidereal target or a NonSidereal target.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidereal</td>
<td>RA</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
</tr>
<tr>
<td></td>
<td>Equinox</td>
</tr>
</tbody>
</table>

Sidereal target is defined by RA, Dec and Equinox.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NonSidereal</td>
<td>NAIF_ID</td>
</tr>
<tr>
<td></td>
<td>OrbitalElements</td>
</tr>
</tbody>
</table>

A NonSidereal target can be defined as either a NAIF_ID or an OrbitalElements.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrbitalElements</td>
<td>Epoch</td>
</tr>
<tr>
<td></td>
<td>PerihelionDistance</td>
</tr>
<tr>
<td></td>
<td>Eccentricity</td>
</tr>
<tr>
<td></td>
<td>Inclination</td>
</tr>
<tr>
<td></td>
<td>LittleOmega</td>
</tr>
<tr>
<td></td>
<td>BigOmega</td>
</tr>
<tr>
<td></td>
<td>PerihelionDay</td>
</tr>
</tbody>
</table>

OrbitalElements is defined by 7 parameters:

Epoch: Epoch of the osculating elements, Julian date

PerihelionDistance: Perihelion distance (AU)

Eccentricity: The eccentricity of the orbit
Inclination: Inclination of orbit plane (DEG) with regard to J2000 ecliptic plane

LittleOmega: Argument of Perihelion (DEG) with regard to J2000 ecliptic/equinox. It is the angle (in the body's orbit plane) between the ascending node line and perihelion measured in the direction of the body's orbit. This angle is often denoted as lower-case omega (ω).

BigOmega: Longitude of Ascending Node (DEG) with regard to J2000 ecliptic/equinox. It is the angle between the reference X-direction (typically the vernal equinox) and the point at which the body passes up (north) through the reference plane. This angle is often denoted as capital omega (Ω).

PerihelionDay: Perihelion Julian Day Number

NoSplit: If present, indicating the block should not be split.

MinimumDuration: Minimum duration of the AORs in this block.

Comment: Comments about this block.

Links: Other ObsBlock this block is related to.

ObsBlockPriority: The priority of this block. The allowed values are determined by the SOFIA program. It has the same values of the ObsPlan’s Priority, plus a “Redo”.

11.5. ObsPlanObsBlockInfoList Sample xml

- Permission Denied
 <ObsPlanObsBlockInfoList>
 <Retval>Permission Denied.</Retval>
 </ObsPlanObsBlockInfoList>

- No Matching Record
 <ObsPlanObsBlockInfoList>
 <Retval>No Matching Record Found.</Retval>
 </ObsPlanObsBlockInfoList>

- ObsPlan exists, but it does not have observation block
 <ObsPlanObsBlockInfoList>
 <Proposal>
 <PropID>01_0072</PropID>
 <Title>[CII] in the Magellanic Clouds: sampling low-metallicity ISM physics</Title>
 <TACGrade>4.7</TACGrade>
 </Proposal>
 <Retval>No Observation Block is found for ObsPlan 01_0072</Retval>
 </ObsPlanObsBlockInfoList>

Success
<ObsPlanObsBlockInfoList>
 <PropID>05_0064</PropID>
</ObsPlanObsBlockInfoList>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE

52
<ObsBlockInfo>
 <ObsBlockID>OB_05_0064_01</ObsBlockID>
 <ObsBlockName>Westerlund 1</ObsBlockName>
 <Instrument name="FORCAST">
 <Config>IMAGING</Config>
 </Instrument>
 <ObservationCenter>
 <Sidereal>
 <RA>16.78444480895996</RA>
 <Dec>-45.8511085102539</Dec>
 <Equinox>2000.0</Equinox>
 </Sidereal>
 </ObservationCenter>
 <RequestedDuration>8437.0259</RequestedDuration>
 <PlannedDuration>8400.0</PlannedDuration>
 <ExecutedDuration>9143.22</ExecutedDuration>
 <NoSplit></NoSplit>
 <MinimumDuration>20.0</MinimumDuration>
 <Links>OB_05_0008_01,OB_05_0008_02</Links>
 <Comment>Comment of blocks</Comment>
 <Priority>Should Do</Priority>
</ObsBlockInfo>

<ObsBlockInfo>
 <ObsBlockID>OB_05_0064_02</ObsBlockID>
 <ObsBlockName>RSGC1</ObsBlockName>
 <Instrument name="FORCAST">
 <Config>IMAGING</Config>
 </Instrument>
 <ObservationCenter>
 <Sidereal>
 <RA>18.63277816772461</RA>
 <Dec>-6.88333206176758</Dec>
 <Equinox>2000.0</Equinox>
 </Sidereal>
 </ObservationCenter>
</ObsBlockInfo>
12. API TO UPLOAD A FLIGHT PLAN TO DCS

This section documents the message and protocol for the FMI to use to upload a flight plan to DCS using HTTPS protocol. There is no CORBA interface for uploading function.

12.1. Flight Plan XML Definition

12.1.1. Description
Flight Plan XML string containing the summary information of a flight plan. The schema of the Flight Plan XML is defined in FMI ICD (SCI-US-ICD-SE03-2005) thus is not part of the scope of this document. (example should be in the FMI ICD, not here or will have to update this document whenever the FMI ICD updates).

12.2. Upload Flight plan to DCS with HTTPS web server protocol

This section describes the upload protocol for FMI to upload flight plan and its related data to the DCS via a web server service method.

12.2.1. Upload Flight plan to DCS
To upload a flight plan to DCS, the FMI opens a secure HTTPS connection, and passes the flight plan xml string to the DCS, along with the flight plan image and a flight plan summary. The [DCSWEBHOST] is the host name of the DCS server where the flight plan will be uploaded to.

- URL: https://[DCSWEBHOST]/observationPlanning/DbProxy/UploadFlightPlanFiles.jsp
• Input parameters
 o **fpFile** File – Individual flight plan .fp file
 o **xmlFile** File – Individual flight plan .xml
 o **imgFile** File – Individual flight plan image .png
 o **misFile** File – Individual flight plan summary .mis
 o **flightSeriesID** String

• Output:
 o String – Status returned by DCS, always starts with either "SUCCESS:" or "ERROR:"

• Permission: Only the following roles can upload a flight plan
 o TACLead
 o DCSAdmin
 o FPAdmin

13. API TO DOWNLOAD A FLIGHT PLAN FROM DCS

13.1. Retrieve a flight plan through CORBA interface

To retrieve a flight plan stored in the DCS, a CORBA interface is provided. There is no web service interface for this function. The CORBA object FMView is defined in Section “FlightManagment Module”.

13.1.1. Get all flight plan IDs for given flight series ID

Use this method to get a list of flight plan IDs associated with a flight series ID.

• Method definition:
  ```cpp
typedef sequence<string> FlightPlanIDSeq;
PDRetVal getFlightPlanIDs (in string flightSeriesID, out FlightPlanIDSeq ids);
```

The flight plan ID list is returned inside the “out” parameter as an array of string.

• Return Flag
 o **PDRetVal.Success**
 o **PDRetVal.NotFound** -- ids.value = new String[0]
 o **PDRetVal.InternalError** -- ids.value = new String[0]

13.1.2. Retrieve a Flight Plan using CORBA

To retrieve a single flight plan based on a flight plan ID, use the method

```cpp
typedef sequence<octet> FlightPlanBinary;
PDRetVal getFlightPlanBinary (in string flightPlanID, out FlightPlanBinary fpdata );
```
The flight plan is returned inside the “out” parameter as an array of byte. The Flight Plan binary was uploaded to the DCS and stored in the database without any parsing, and is returned in its original form here.

- Return Flag
 - PDRetVal.Success
 - PDRetVal.NotFound
 - PDRetVal.InternalError

13.1.3. Retrieve a Flight Plan with HTTPS
To retrieve a single flight plan based on a flight plan ID, use the method

URL: https://dcs.sofia.usra.edu/observationPlanning/DbProxy/downloadFlightPlanFile.jsp
Input: String, fileType [xml | mis | img | fp]
 String, fpid
Output: File, [ASCII | Binary]
Privilege: SMO and above

13.2. Retrieve a List of Flight Plan ID List using HTTPS
To retrieve a single flight plan based on a flight plan ID, use the method

13.2.1. Obsplan XML DTD Definition
FlightPlanIDList DTD
<!ELEMENT FlightPlanIDList (FlightPlanID*, Retval) >
<!ELEMENT FlightPlanID (#PCDATA)>
<!ATTLIST FlightPlanID status #REQUIRED >
<!ELEMENT Retval (#PCDATA)>

13.2.2. Https interface
URL: https://dcs.sofia.usra.edu/observationPlanning/DbProxy/GetFlightPlanIDList.jsp
Input: String, cycle | fsID
Output: File, CYCLEID_FlightPlanIDList.xml | FSID_FlightPlanIDList.xml
Privilege: SMO and above

13.2.3. Examples
- Example 1:
 <FlightPlanIDList>
 <FlightPlanID status="FLOWN">201701_EX_02</FlightPlanID>
 <FlightPlanID status="RETURN TO BASE">201701_GR_NANCY</FlightPlanID>
 ...
 <FlightPlanID status="PLANNED">201707_FI_ILYA</FlightPlanID>
 <FlightPlanID status="TIME NOT COUNTED">201708_FO_JE_ALT</FlightPlanID>
 <Retval>SUCCESS</Retval>
 </FlightPlanIDList>

- Example 2:
 <FlightPlanIDList>
 <Retval>No Matching Records Found.</Retval>
 </FlightPlanIDList>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
14. CONTRIBUTORS

The following people were original authors or contributed significantly to this document.

Dr. Ralph Shuping, Space Science Institute
Dr. Elizabeth Moore, USRA SOFIA
Bob Krzaczek, RIT Data Cycle System Software Engineer
Li Sun, USRA SOFIA
Tom Kilsdonk, USRA/SOFIA
Thomas Civeit
Melanie Clarke, USRA SOFIA
APPENDIX A. ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOR</td>
<td>Astronomical Observation Request</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ARC</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>CCB</td>
<td>Configuration Control Board</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>CS</td>
<td>Cycle Scheduler</td>
</tr>
<tr>
<td>CSCI</td>
<td>Computer Software Configuration Item</td>
</tr>
<tr>
<td>CVS</td>
<td>Concurrent Versioning System</td>
</tr>
<tr>
<td>DCS</td>
<td>Data Cycle System</td>
</tr>
<tr>
<td>FPE</td>
<td>Flight Plan Editor</td>
</tr>
<tr>
<td>FMI</td>
<td>Flight Management Infrastructure</td>
</tr>
<tr>
<td>GI</td>
<td>Guest Investigator</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol Secure</td>
</tr>
<tr>
<td>JSP</td>
<td>Java Server Page</td>
</tr>
<tr>
<td>NAIF_ID</td>
<td>Navigation and Ancillary Information Facility (NAIF) assigned ID for an object</td>
</tr>
<tr>
<td>ObsPlan</td>
<td>Observing Plan</td>
</tr>
<tr>
<td>ObsBlock</td>
<td>Observation Block</td>
</tr>
<tr>
<td>SPR</td>
<td>Software Problem Report</td>
</tr>
<tr>
<td>SMO</td>
<td>SOFIA Missions Operations</td>
</tr>
<tr>
<td>SSC</td>
<td>SOFIA Science Center</td>
</tr>
<tr>
<td>SSMO</td>
<td>SOFIA Science Missions Operations</td>
</tr>
<tr>
<td>SSMOC</td>
<td>SOFIA Science Missions Operations Center</td>
</tr>
<tr>
<td>STS</td>
<td>Short Term Scheduler</td>
</tr>
<tr>
<td>TAC</td>
<td>Time Allocation Committee</td>
</tr>
<tr>
<td>USRA</td>
<td>University Space Research Association</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE

58
APPENDIX B. SOFIA AOT TEMPLATE & EXAMPLES

To help the SOFIA scientists and the instrument teams define an AOT without the need to work in an XML file format, these tables will collect the similar information needed to define an AOT. The DCS SSPOT team will translate this table into the AOT XML file used by the DCS. For each of the observing mode, (or AOT), there is a set of parameters that need to be defined, either by the user (for stand alone parameters) or set because of another parameter is set by the user (dependency). FSI teams can use the template table below as a guide:

AOT Definition Template

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preferred Name</th>
<th>FITS Keyword</th>
<th>Value(s) Default</th>
<th>Data Type</th>
<th>Units</th>
<th>Hi</th>
<th>Low</th>
<th>Stand Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Preferred parameter name is the label that is going to be displayed to the user. This is necessary because different instruments may call the same parameter differently. For example, chop throw for FORCAST may be called chop amplitude for another instrument.
- If a parameter is a stand alone parameter, it means it does not have dependencies on the other parameters, the user can enter any value within the limit. If a parameter is not a stand alone one, the user is not allowed to enter a value at will, the value of this parameter will be determined by another parameter. An example of how to define the dependencies between parameters is given below.
- Dependency definition is where the scientists and the instrument team should spend effort in. This will translator into “if this one is selected”, what else should be set according to this”. Be sure to spend some time to define this part clearly. The dependencies in the AOT_FORCAST_TPCD are very cleanly defined by Jim De Buizer and Ralph Shuping. It should serve as a template to define dependencies.
- Default and limits save user work and prevent unnecessary mistakes, so be sure to spend time defining these as well.
APPENDIX C. SI KEYWORD DICTIONARY

Changes to Keyword Dictionary from Rev F to Rev G (May 30, 2018)

- Added Data Processing keywords ASSC_MSN, ASSC_FRQ
- FILEGP_B FILEGP_R for FIFI-LS only
- INSTMODE - allow 'TOTAL_POWER'
- OBSTYPE - allow STANDARD_WAVECAL for FIFI-LS
- NODPATT - allow any string
- N_SPEC - used only for GREAT, not any other instruments
- SCANTYPE - scan type HAWC (BOX | LISSAJOUS | SWEEP)
- TELVA description - Adwin/Alan :
 - Allan explained that ROF (given in the flight plans) is the Zenith PA (from North through East). For EXES it means that slit PA=ROF+270.
- SRCTYPE
- Added value COMPACT_SOURCE
- MCCS sourced keywords checked against SOF-DA-ICD-SE03-052 revL (Dec 1, 2017) Interface Control Document MCCS to Science Instrument Software Interface (Functional) MCCS_SI_04
- CHPPHASE updated from int to float
- CHPTIP and CHPTILT range changed to [-1125 1125].
- Changed the source from “MCCS” to “TA” for the following keywords according to SOF-DF-ICD-SE03-047 Rev 11 (TA_MCCS_F Feb, 2017):
 - TEMPPRI1/2/3 (ta_mcp.mcp_hk_pms.pms_temp_1/2/3)
 - TEMPSEC1 (ta_mcp.mcp_hk_pms.sma_temp_1)
 - FOCUS_ST (ta_scs.fcm_status.fcm_act_t)
 - FOCUS_EN (ta_scs.fcm_status.fcm_act_t)
 - FBC-STAT (ta_tsc.tsc_mcs_hk.fbc_status)

- Added Data Processing keywords DATAQUAL, N_SPEC, ASSC_AOR
- Added Instrument keyword DETCHAN, TOTINT
- Added Dither keywords DTHCRSYS, DTHXOFF, DTHYOFF
- Updated MCCS TELEL source to coord.pos.sibs.alt from coord.pos.sibs.el
- Updated Chopping/Nodding
 - Increased angle range to +/-360 from +/-180
 - Added nodding pattern BA to NODPATT
 - Added SIRF as one of the CHPCRSYS.

Changes to Keyword Dictionary from Rev D to Rev E (Feb 5, 2013)

- Added PIPELINE and PIPEVERS keywords to be populated by pipeline or other processing software.
Changes to Keyword Dictionary from Rev C to Rev D (10-12-2012)

- Included changes for C1 and C2:
 - updated MCCS locations for LASTREW and CHOPSYM
 - updated ALTI_STA/END to refer to pressure altitude and changed MCCS location.
 - reverted back to TEMPPRI1/2/3 and TEMPSEC1
 - Removed TEMPPRIC/L/R/F
- Reinstated DITHER keyword
- Changed DCSREV to FILEREV (no impact to SI teams)
- Added "FOCUS_LOOP" to possible values for OBSTYPE.
- Changed units in heterodyne area to MHz (J. Stutzki).
- Added value "UNKNOWN" for source type.
- Added relevant MCCS HK locations for some Nodding keywords. Updated values for NODCRSYS keyword to match MCCS values.
- Updated FLIGHTLG MCCS source to "fltexec.leg_data.leg_seq".
- Clarified TSC-STAT: MCCS location is "ta_state.tsc_status"

Notes:
- Files with DATASRC = "CALIBRATION" are made public immediately upon archive ingest.

Rules of “requirements”:

The 7 absolutely required keywords are the minimum set that will allow the data files to be archived in the DCS database (Section 8.1.1). Without these 7 keywords, the ingestion process will fail.

Beyond the above keywords, other required keywords are important for data processing (reduction) and provide values for searching.

Besides the absolutely required and required keywords, each instrument can provide instrument specific data in the FITS files as well. These keywords will be defined in the individual [Instrument]-DCS ICD thus is outside the scope of this document.

Recommended values for all level data products:

Observation keywords:
- AOR_ID – This is the only unique keyword that is carried from the proposal to observing plan to flight plan and data products. This keyword allows DCS to provide an accurate status on the AORs through out the planning and the only keyword that ties the data files that are in various processing state.

Mission Management Keywords:
- PLANID – This is the only keyword that can tie a data file to the owner of the data, e.g. the PI that submitted the proposals that generated these data. This keyword enables the archive search by PI names.
Recommended values for Level 2 and 3 data products:

Observation Keywords:
- OBS_ID – If there is a one-to-one mapping between the LEVEL 1 file and the LEVEL 2 file, then the original OBS_ID should be used with a “P_” pre-pended to indicate that the data has been processed. If there is not a one-to-one mapping, then an appropriate representative OBS_ID should be chosen from the input files and pre-pended with a “P_”.

Data Processing Keywords: Must be updated by the pipeline to appropriate values.
- PROCSTAT = ‘LEVEL_2’
- PRODTYPE: In some cases, SI pipelines might produce different products as part of Level 2 processing. These will be distinguished using the PRODTYPE keyword; possible values must be specified in the SI-DCS ICD.
- PIPELINE: Name of pipeline/processing software used to generate file (e.g. “FLITECAM Data Reduction Pipeline v1.0.0”)
- PIPEVERS: Set to full release tag for pipeline that produced the file (e.g. “FDRP_1_0_0_UT2013_4_1”)

Mission Keywords: Values can be carried forward from the LEVEL_1 input data.

Origination Keywords:
- ORIGIN: Set to organization that is operating the pipeline. For example, if the pipeline is being run in the SOFIA Science Center as part of SMO, then set to ‘SOFIA Science and Mission Ops’ (or similar). This will need to be configured in the deployed pipeline.
- OBSERVER: Carried from LEVEL_1 data.
- CREATOR: Name and version of the processing software: e.g. ‘FORCAST DRIP v1.0’.
- OPERATOR: Carried from LEVEL_1 data.
- FILENAME: Name of host file.

Date and Time Keywords:
- DATE: date of file creation by pipeline
- DATE-OBS, UTCSTART/END: use earliest and latest values from LEVEL_1 input files.
 For Missing Date (Timestamp) : representation [yyyy-mm-ddThh:mm:ss[.sss]] default = ['1970-01-01T00:00:00.0'] For missing time: representation: [hh:mm:ss.s] default = "00:00:00;

Environmental Keywords:
- WVZ_STA/END: use earliest and latest values from LEVEL_1 input files.
- All others: pipeline should set to values for earliest input LEVEL_1 file.

Aircraft Keywords:
- All start/end keywords: use earliest and latest values from LEVEL_1 input files.
- All others: pipeline should set to values for earliest input LEVEL_1 file.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
Telescope Keywords:
- TELESCOP/TELCONF: carried forward from LEVEL_1 input data.
- TELRA/TELDEC/TELVPA/TELEQUI: RA and Dec of the central pixel of the array, or center pixel of slit – computed from WCS. VPA to be calculated from WCS as well.
 - **EXCEPTION**: For some processed data (e.g. FORCAST NMC and NPC modes), it will not be possible to produce a meaningful WCS solution across the final image. In these cases, the TELRA and TELDEC should just be carried forward from a representative LEVEL 1 file.
- LASTREW: Value can be carried forward from the LEVEL_1 input data
- FOCUS_ST/EN: use earliest and latest values from LEVEL_1 input files.
- TELEL/XEL/LOS: pipeline should set to values for earliest input LEVEL_1 file.
- TSC-STAT/FBC-STAT: pipeline should set to values for latest input LEVEL_1 file.
- OBSRA/DEC/EQUINOX: Requested RA/Dec from AOR. Should be the same for all input files, and hence value can be carried forward into Level 2 files.
- ZA_START/END: use earliest and latest values from LEVEL_1 input files.
- TRACMODE: Value can be carried forward from the LEVEL_1 input data.
- TRACERR: If all LEVEL_1 files have TRACERR = F, then LEVEL_2 TRACERR = F; else TRACERR = T.

Data Collection Keywords: can be carried forward from the LEVEL_1 input data.

Instrument Keywords:
- EXPTIME: recalculated by the pipeline and set appropriately.
- All others: can be carried forward from the LEVEL_1 input data.

Array Detector Keywords:
- SIBS_X/Y: For data products with a one-to-one mapping with the original LEVEL_1 files, values can be carried forward from the LEVEL_1 data; otherwise, the keywords should be set to the default unknown value (Integers: -9999) or removed.
- WCS Keywords: Must be calculated and set by the pipeline.
- All others: can be carried forward from the LEVEL_1 input data.

Heterodyne Keywords: TBD, but will likely need to be updated by the pipeline.

Nodding/Chopping Keywords: can be carried forward from the LEVEL_1 input data.

Dithering Keywords:
- DTHINDEX: If no meaning for combined dataset, set to the default unknown value (Integers: -9999) or remove.
- All others: can be carried forward from the LEVEL_1 input data.

Mapping/Scanning Keywords: can be carried forward from the LEVEL_1 input data.

History Keywords: In addition to the usual keyword values, the following information must be provided in the HISTORY keywords at the end of the header:

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
- List of input OBS_IDs for the input LEVEL_1 in the input manifest. This gives the GI or archive user a quick way of seeing what files were used to generate the LEVEL_2 product.
- List of any auxiliary data products used.
- List of processing steps completed and any errors encountered.

(attach external PDF documents)
SOFIA Keywords Dictionary

[Version: REV G] [Date: 05-30-2018]

FITS Keywords Table

All FITS files submitted to the DCS for archiving must adhere to the FITS standard (v3.0, 2008 July 10)

WCS Keywords (see Array Detector Keywords section) should adhere to standard conventions (see http://fits.gsfc.nasa.gov/fits_wcs.html and http://tdc-www.harvard.edu/wcstools/wcstools.fits.html for discussion and references).

- **FITS Name**: Keyword name - generally not the same as the abstract title.
- **Comment**: Short description of keyword - suitable for FITS comment fields. Long descriptions can be found in the detailed descriptions. Comment text should include units as well.
- **HDU**: header data unit - where the keyword can be used in the FITS file.
- **Representation**: How the value of the keyword should be represented. In simple cases this may just be "string" or "float", but more complicated formats can be specified here (e.g. date and time).
- **Type**: Specific FITS type - integer, float, string, or logical (boolean).
- **Units**: Required units for keyword, if applicable.
- **Range**: Possible keyword values, including enumerated types.
- **Example**: Value example.
- **Is Required**: Condition for which the keyword is required
 - Absolutely required
 - Yes
 - Conditionally required keywords are those that are only required if the stated condition applies, (e.g. DETCHAN is required if the instrument is FORCAST or FIFI-LS)
- **Source**: Provider and location, if blank then data provided by SI. Known pre-defined aliases for some of the MCCS HK and TA HK data items are included. We recommend the SI developers assign custom aliases to the others as well for ease of reference.

Observation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datascource</td>
<td>DATASRC</td>
<td>Data Source</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>enum [ASTRO, CALIBRATION, LAB, TEST, OTHER, FIRSTPOINT]</td>
<td></td>
<td>Yes (Absolutely)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObservationType</td>
<td>OBSTYPE</td>
<td>Observation type, added</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>enum [OBJECT, STANDARD_FLUX, STANDARD_TELLURIC, LAMP, FLAT, DARK, BIAS, SKY, BB, GASCELL, LASER, FOCUS_LOOP, STANDARD_WAVECAL]</td>
<td></td>
<td>[OBJECT]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceType</td>
<td>SRCTYPE</td>
<td>Source type, added</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>POINT_SOURCE, EXTENDED_SOURCE, COMPACT_SOURCE, OTHER, UNKNOWN]</td>
<td></td>
<td>[POINT_SOURCE]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeywordDictionaryVersion</td>
<td>KWDICT</td>
<td>SOFIA Keyword dictionary version, DCS ICD rev.</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[DCS_SI_01_A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObservationID</td>
<td>OBS_ID</td>
<td>SOFIA Observation Identification</td>
<td>any</td>
<td>MMMMMMM_[CJ][nnn]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[2011-06-08_FO_F064B0187]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImageID</td>
<td>IMAGEID</td>
<td>Image identification index</td>
<td>extension</td>
<td>[integer]</td>
<td>[int]</td>
<td></td>
<td></td>
<td></td>
<td>Multiple images in a single file for an observation, e.g. dithering, mosaicking, etc...</td>
<td></td>
</tr>
<tr>
<td>ObjectName</td>
<td>OBJECT</td>
<td>Object Name</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td>Orion Nebula (M42)</td>
<td></td>
</tr>
<tr>
<td>AOTUniqueID</td>
<td>AOT_ID</td>
<td>Astronomical Observation Template Identifier, most SI already use the correct format, clarified in revF</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td>FLITECAM_Imaging AOT SCI-US-ICD-SE03-2044, revB, AOT_FORCAST_GRISM</td>
<td></td>
</tr>
</tbody>
</table>

FITS Keywords Rendering file:///Users/llin1/dcs_doc/SE03_ICD/DCS_ICD/revG/KWDict_revG.xml

1 of 9 8/22/18, 11:58 PM
Data Processing Related Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSC_MSN (New)</td>
<td>ASSC_MSN</td>
<td>List of Mission IDs used in generating a combined output file, added in revG</td>
<td>any</td>
<td>[MID_n,MID_n]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSC_FRQ (New)</td>
<td>ASSC_FRQ</td>
<td>List of all frequencies used in generating a combined output file, added in revG</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>GHz</td>
<td></td>
<td>[1900.54, 1496.92]</td>
<td>LEVEL 2/3/4 data, if product is associated with multiple frequencies</td>
<td>FITS : FITS</td>
</tr>
<tr>
<td>ProcessingStatus</td>
<td>PROCSTAT</td>
<td>Processing status, required for all SI starting revF</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeaderStatus</td>
<td>HEADSTAT</td>
<td>Header status, added MODIFIED in revF</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[ORIGINAL]</td>
<td>Required for all SI, FLITECAM already has</td>
<td>SI / DCS :</td>
</tr>
<tr>
<td>DataQuality</td>
<td>DATAQUAL</td>
<td>Result of data processing, replaced the old DataQualityAssessment</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[NOMINAL]</td>
<td>LEVEL 2/3/4 Product.</td>
<td>Pipeline :</td>
</tr>
<tr>
<td>NumberOfSpectral</td>
<td>N_SPEC</td>
<td>Number of spectra included in file. (GREAT only)</td>
<td>primary</td>
<td>[integer]</td>
<td>[int]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AssociatedAORIDs</td>
<td>ASSC_AOR</td>
<td>List of Astronomical Observation Request Identifiers.</td>
<td>any</td>
<td>[PLANID_n,PLANID_n]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[02_0103_1,03_0098_127]</td>
<td>LEVEL 2/3/4 data, if product is associated with multiple DCS AORs</td>
<td>DCS : Observing Plan</td>
</tr>
<tr>
<td>PipelineName</td>
<td>PIPELINE</td>
<td>Pipeline/Processing Software</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PipelineVersion</td>
<td>PIPEVERS</td>
<td>Pipeline Version, full tag.</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProductType</td>
<td>PRODTYPE</td>
<td>Product type.</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCSFileRevision</td>
<td>FILEREV</td>
<td>File revision identifier.</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[y2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mission Management Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObservingPlanUniqueID</td>
<td>PLANID</td>
<td>Observing plan identification</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[81_0131]</td>
<td></td>
<td>DCS : Observing Plan</td>
</tr>
<tr>
<td>AircraftDeployment</td>
<td>DEPLOY</td>
<td>Site deployment</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[DAOF]</td>
<td>Yes</td>
<td>SSC : Mission Plan</td>
</tr>
<tr>
<td>MissionID</td>
<td>MISSN-ID</td>
<td>Mission ID</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCCS : session.user_environment.mission_id</td>
</tr>
<tr>
<td>FlightLeg</td>
<td>FLIGHTLG</td>
<td>Flight leg, updated to fltexec_data from leg_data</td>
<td>primary</td>
<td>[integer]</td>
<td>[int]</td>
<td></td>
<td></td>
<td>[4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Grouping Keywords

FileGroupID	FILEGPID	File group identifier.	primary	[string]	[str]			[ORIONMAP_20040101]	SI	SI :
FileGroupB (New)	FILEGP_B	File group identifier for the BLUE/SW filter for FIFI-LS and FORCAST	primary	[string]	[str]			[ORIONMAP_20040101]	SI	SI :
FileGroupR (New)	FILEGP_R	File group identifier for the RED/LW filter for FIFI-LS and FORCAST.	primary	[string]	[str]			[ORIONMAP_20040101]	SI	SI :
Origin Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>ORIGIN</td>
<td>Origin of FITS file.</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[FORCAST - Cornell Univ.]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observers</td>
<td>OBSERVER</td>
<td>Observer(s)</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[Jane Astro]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FileCreator</td>
<td>CREATOR</td>
<td>File creation task (with version info).</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[Mauna Kea IR]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TelescopeOperator</td>
<td>OPERATOR</td>
<td>Telescope task</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[Joe Astro]</td>
<td>Yes</td>
<td>SSC : Mission Plan</td>
</tr>
<tr>
<td>Filename</td>
<td>FILENAME</td>
<td>Name of host file</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[040301_077_05FL001.fits]</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Date and Time Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreationDate</td>
<td>DATE</td>
<td>Date of file creation</td>
<td>any</td>
<td>yyyy-mm-ddT[hh:mm:ss[.sss]]</td>
<td>[str]</td>
<td>[]</td>
<td>[2004-01-01T13:45:45.2]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ObservationDate</td>
<td>DATE-OBSS</td>
<td>UTC Date of exposure start</td>
<td>any</td>
<td>yyyy-mm-ddT[hh:mm:ss[.sss]]</td>
<td>[str]</td>
<td>[]</td>
<td>[2004-01-01T12:11:10.5]</td>
<td>Yes</td>
<td>(Absolutely)</td>
</tr>
<tr>
<td>ObservationStartUTC</td>
<td>UTCSTART</td>
<td>UTC of exposure start</td>
<td>any</td>
<td>hh:mm:ss</td>
<td>[str]</td>
<td>[]</td>
<td>[09:30:01.00]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ObservationEndUTC</td>
<td>UTCEND</td>
<td>UTC of exposure end</td>
<td>any</td>
<td>hh:mm:ss</td>
<td>[str]</td>
<td>[]</td>
<td>[09:30:01.00]</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterVaporZenith_Start</td>
<td>WVZ_STA</td>
<td>Water vapor, integrated to zenith, observation start.</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>microns</td>
<td>gt [0.0]</td>
<td>[1.503]</td>
<td>Yes</td>
</tr>
<tr>
<td>WaterVaporZenith_End</td>
<td>WVZ_END</td>
<td>Water vapor, integrated to zenith, observation end.</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>microns</td>
<td>gt [0.0]</td>
<td>[1.634]</td>
<td>Yes</td>
</tr>
<tr>
<td>static_air_temp</td>
<td>TEMP_OUT</td>
<td>Static air temperature outside aircraft. (For Early Science: Value=NotSet)</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>C</td>
<td>[]</td>
<td>[-10.5]</td>
<td>Yes</td>
</tr>
<tr>
<td>PrimaryMirrorTemperature_1</td>
<td>TEMPPRI1</td>
<td>Temperature of primary mirror, source changed from MCCS to TA in revG.1</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>C</td>
<td>gt [-273.0]</td>
<td>[-10.5]</td>
<td>Yes</td>
</tr>
<tr>
<td>PrimaryMirrorTemperature_2</td>
<td>TEMPPRI2</td>
<td>Temperature of primary mirror, source changed from MCCS to TA in revG.1</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>C</td>
<td>gt [-273.0]</td>
<td>[-10.5]</td>
<td>Yes</td>
</tr>
<tr>
<td>PrimaryMirrorTemperature_3</td>
<td>TEMPPRI3</td>
<td>Temperature of primary mirror</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>C</td>
<td>gt [-273.0]</td>
<td>[-10.5]</td>
<td>Yes</td>
</tr>
<tr>
<td>SecondaryMirrorTemperature_1</td>
<td>TEMPSM1</td>
<td>Temperature of secondary, source changed from MCCS to TA in revG.1</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>C</td>
<td>[-15.2]</td>
<td>Yes</td>
<td>TA : ta_mcp.mcp_hk_pms.sm_temp_1</td>
</tr>
</tbody>
</table>

Aircraft Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude_Start</td>
<td>ALTI_STA</td>
<td>Aircraft pressure altitude, start of observation.</td>
<td>any</td>
<td>[general]</td>
<td>[ft]</td>
<td>Feet</td>
<td>[]</td>
<td>35229</td>
<td>Yes</td>
</tr>
<tr>
<td>Altitude_End</td>
<td>ALTI_END</td>
<td>Aircraft pressure altitude, end of observation.</td>
<td>any</td>
<td>[general]</td>
<td>[ft]</td>
<td>Feet</td>
<td>[]</td>
<td>35128</td>
<td>Yes</td>
</tr>
<tr>
<td>Airspeed</td>
<td>AIRSPEED</td>
<td>True aircraft airspeed.</td>
<td>any</td>
<td>[general]</td>
<td>[Knots]</td>
<td>[]</td>
<td>375.0</td>
<td>Yes</td>
<td>MCCS : das.ic1080_10hz.true_airspeed</td>
</tr>
<tr>
<td>GroundSpeed</td>
<td>GDRSPEED</td>
<td>Aircraft ground speed.</td>
<td>any</td>
<td>[general]</td>
<td>[Knots]</td>
<td>[]</td>
<td>350.0</td>
<td>Yes</td>
<td>MCCS : das.ic1080_2hz.ground_speed</td>
</tr>
</tbody>
</table>
Latitude_Start LAT_STA Aircraft latitude, start of observation. any [general] [ft] Degrees [] [35.2567] Yes MCCS : das.ic1080.2hr.lat_fms_1 | $latitude
Longitude_Start LON_STA Aircraft longitude, start of observation. any [general] [ft] Degrees [] [35.2567] Yes MCCS : das.ic1080.2hr.lon_fms_1 | $longitude
Latitude_End LAT_END Aircraft latitude, end of observation. any [general] [ft] Degrees [] [35.2567] Yes MCCS : das.ic1080.2hr.lat_fms_1 | $latitude
Longitude_End LON_END Aircraft longitude, end of observation. any [general] [ft] Degrees [] [35.2567] Yes MCCS : das.ic1080.2hr.lon_fms_1 | $longitude
Heading HEADING Aircraft true heading. any [general] [ft] Degrees [] [10.7892] Yes MCCS : das.ic1080.2hz.true_heading | $heading
TrackAngle TRACKANG Aircraft track angle. any [general] [ft] Degrees [] [10.7892] Yes MCCS : das.ic1080.2hz.true_track_angle | $track_angle

Telescope Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope</td>
<td>TELESCOP</td>
<td>Telescope name</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>'SOFIA 2.5m'</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TelescopeConfig</td>
<td>TELCONF</td>
<td>telescope configuration</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TelescopeRA</td>
<td>TELRA</td>
<td>SI Boresight RA (J2000)</td>
<td>any</td>
<td>[general]</td>
<td>[hh:mm:ss.s]</td>
<td>[ft]</td>
<td>Hours</td>
<td>interval [0,24]</td>
<td>[9.023456]</td>
<td>[5:35:17.3]</td>
</tr>
<tr>
<td>TelescopeVPA (Updated)</td>
<td>TELVPA</td>
<td>SI Boresight VPA (ICRS J2000) - as returned by MCCS, Clarified in revG: Latest updates from Allan Meyer: ROF (given in the flight plans) is the Zenith PA (from North through East). For EXES it means that slt PA=ROF+270.</td>
<td>any</td>
<td>[general]</td>
<td>[hh:mm:ss.s]</td>
<td>[ft]</td>
<td>decimal</td>
<td>interval [0,360]</td>
<td>[255.05]</td>
<td></td>
</tr>
<tr>
<td>TelescopeEquinox</td>
<td>TELEQUI</td>
<td>Equinox of ERF coords RA/Dec/VPA.</td>
<td>any</td>
<td>[general]</td>
<td>[str]</td>
<td></td>
<td></td>
<td>[j2000]</td>
<td>Yes</td>
<td>MCCS : coord.pos.sibs.equinox</td>
</tr>
<tr>
<td>TelescopeFocus_Start (Updated)</td>
<td>FOCUS_ST</td>
<td>Telescope focus - SMA FCM position (microns), observation start. Source changed from MCCS to TA in revG.1</td>
<td>any</td>
<td>[general]</td>
<td>[ft]</td>
<td>microns</td>
<td>interval [-5000,5000]</td>
<td>[1245]</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>TelescopeFocus_End (Updated)</td>
<td>FOCUS_EN</td>
<td>Telescope focus - SMA FCM position (microns), observation end. Source changed from MCCS to TA in revG.1</td>
<td>any</td>
<td>[general]</td>
<td>[ft]</td>
<td>microns</td>
<td>interval [-5000,5000]</td>
<td>[1322]</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>TelescopeElevation</td>
<td>TELEL</td>
<td>Telescope elevation above the horizon at observation start - as returned by MCCS. Changed source from coord.pos.sibs.et to coord.pos.sibs.alt in revF.</td>
<td>any</td>
<td>[general]</td>
<td>[ft]</td>
<td>decimal</td>
<td>interval [0,90]</td>
<td>[47.345789]</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

SOFIA Keywords | FITS Keywords Rendering
file:///Users/llin1/dcs_doc/SE03_ICD/DCS_ICD/revG/KWDict_revG.xml

4 of 9
8/22/18, 11:58 PM
Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>isChopping</td>
<td>CHOPPING</td>
<td>Chopping flag</td>
<td>primary</td>
<td>[boolean]</td>
<td>[log]</td>
<td>[]</td>
<td>[T]</td>
<td>If mode in use.</td>
<td></td>
</tr>
<tr>
<td>isNodding</td>
<td>NODDING</td>
<td>Nodding flag</td>
<td>primary</td>
<td>[boolean]</td>
<td>[log]</td>
<td>[]</td>
<td>[T]</td>
<td>If mode in use.</td>
<td></td>
</tr>
<tr>
<td>isDithering</td>
<td>DITHER</td>
<td>Dithering flag</td>
<td>primary</td>
<td>[boolean]</td>
<td>[log]</td>
<td>[]</td>
<td>[T]</td>
<td>If mode in use.</td>
<td></td>
</tr>
<tr>
<td>isMapping</td>
<td>MAPPING</td>
<td>Mapping flag</td>
<td>primary</td>
<td>[boolean]</td>
<td>[log]</td>
<td>[]</td>
<td>[T]</td>
<td>If mode in use.</td>
<td></td>
</tr>
<tr>
<td>isScanning</td>
<td>SCANNING</td>
<td>Scanning flag</td>
<td>primary</td>
<td>[boolean]</td>
<td>[log]</td>
<td>[]</td>
<td>[T]</td>
<td>If mode in use.</td>
<td></td>
</tr>
</tbody>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Telescope Cross Elevation (TELXEL)
Telescope cross elevation at observation start - as returned by MCCS.

Telescope Line Of Sight (TELLOS)
Telescope LOS at observation start - as returned by MCCS.

Tascu Status (TSC-STAT)
TASCU Status at observation end.

Tascu FBC Status (FBC-STAT)
FBC Status at observation end, source changed from MCCS to TA in revG.

Zenith Angle Start (ZA_START)
Telescope zenith angle, start of observation.

Zenith Angle End (ZA_END)
Telescope zenith angle, end of observation.

Tracking Mode (TRACMODE)
SOFIA tracking mode, reduced from 9 to 5 modes based on MCCS-SI_04 revL.

Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Telescope Cross Elevation (TELXEL)
Telescope cross elevation at observation start - as returned by MCCS.

Telescope Line Of Sight (TELLOS)
Telescope LOS at observation start - as returned by MCCS.

Tascu Status (TSC-STAT)
TASCU Status at observation end.

Tascu FBC Status (FBC-STAT)
FBC Status at observation end, source changed from MCCS to TA in revG.

Zenith Angle Start (ZA_START)
Telescope zenith angle, start of observation.

Zenith Angle End (ZA_END)
Telescope zenith angle, end of observation.

Tracking Mode (TRACMODE)
SOFIA tracking mode, reduced from 9 to 5 modes based on MCCS-SI_04 revL.

Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Telescope Cross Elevation (TELXEL)
Telescope cross elevation at observation start - as returned by MCCS.

Telescope Line Of Sight (TELLOS)
Telescope LOS at observation start - as returned by MCCS.

Tascu Status (TSC-STAT)
TASCU Status at observation end.

Tascu FBC Status (FBC-STAT)
FBC Status at observation end, source changed from MCCS to TA in revG.

Zenith Angle Start (ZA_START)
Telescope zenith angle, start of observation.

Zenith Angle End (ZA_END)
Telescope zenith angle, end of observation.

Tracking Mode (TRACMODE)
SOFIA tracking mode, reduced from 9 to 5 modes based on MCCS-SI_04 revL.

Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Telescope Cross Elevation (TELXEL)
Telescope cross elevation at observation start - as returned by MCCS.

Telescope Line Of Sight (TELLOS)
Telescope LOS at observation start - as returned by MCCS.

Tascu Status (TSC-STAT)
TASCU Status at observation end.

Tascu FBC Status (FBC-STAT)
FBC Status at observation end, source changed from MCCS to TA in revG.

Zenith Angle Start (ZA_START)
Telescope zenith angle, start of observation.

Zenith Angle End (ZA_END)
Telescope zenith angle, end of observation.

Tracking Mode (TRACMODE)
SOFIA tracking mode, reduced from 9 to 5 modes based on MCCS-SI_04 revL.

Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Telescope Cross Elevation (TELXEL)
Telescope cross elevation at observation start - as returned by MCCS.

Telescope Line Of Sight (TELLOS)
Telescope LOS at observation start - as returned by MCCS.

Tascu Status (TSC-STAT)
TASCU Status at observation end.

Tascu FBC Status (FBC-STAT)
FBC Status at observation end, source changed from MCCS to TA in revG.

Zenith Angle Start (ZA_START)
Telescope zenith angle, start of observation.

Zenith Angle End (ZA_END)
Telescope zenith angle, end of observation.

Tracking Mode (TRACMODE)
SOFIA tracking mode, reduced from 9 to 5 modes based on MCCS-SI_04 revL.

Data Collection Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Annotation Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

Instrument Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>DETECTOR</td>
<td>Detector name</td>
<td>primary</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[]</td>
<td>[SBRC InSb]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>DetectorSize</td>
<td>DETSIZ</td>
<td>Detector size</td>
<td>primary</td>
<td>[vector]</td>
<td>[str]</td>
<td>[]</td>
<td>[]</td>
<td>[1024,1024]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>PixelScale</td>
<td>PIXSCAL</td>
<td>Pixel scale</td>
<td>primary</td>
<td>[general]</td>
<td>[flt]</td>
<td>arcsec</td>
<td>[]</td>
<td>[0.32]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>Subarrays</td>
<td>SUBARRNS</td>
<td>Number of subarrays used</td>
<td>primary</td>
<td>[integer]</td>
<td>[int]</td>
<td>[]</td>
<td>[]</td>
<td>[2]</td>
<td></td>
<td>If subarrays in use.</td>
</tr>
<tr>
<td>SubarraySize</td>
<td>SUBARR%2d</td>
<td>Sub array size</td>
<td>primary</td>
<td>[section]</td>
<td>[str]</td>
<td>[]</td>
<td>[]</td>
<td>[0-255,0-255]</td>
<td></td>
<td>If subarrays in use.</td>
</tr>
<tr>
<td>ScienceInstrumentBoresightX</td>
<td>SIBS_X</td>
<td>SI Boresight (x) - as returned by MCCS, type in name fixed</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[255]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>ScienceInstrumentBoresightY</td>
<td>SIBS_Y</td>
<td>SI Boresight (y) - as returned by MCCS, type in name fixed</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[255]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>WCS_CTYPE</td>
<td>CTYPEn</td>
<td>Axis type (8 characters)</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[]</td>
<td>[RA--TAN]</td>
<td></td>
<td>Imaging only.</td>
</tr>
<tr>
<td>WCS_CRPIX</td>
<td>CRPIXn</td>
<td>Array location of the reference point in pixels for the n-th axis. Changed from int to float in revF</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[511]</td>
<td></td>
<td>Array instruments only.</td>
</tr>
<tr>
<td>WCS_CRVAL</td>
<td>CRVALn</td>
<td>Coordinate value at reference point for the n-th axis.</td>
<td>any</td>
<td>[flt]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[82.345690]</td>
<td></td>
<td>Imaging only.</td>
</tr>
<tr>
<td>WCS_CDELT</td>
<td>CDELTn</td>
<td>Plate scale for the n-th axis at reference point (deg/pixel).</td>
<td>any</td>
<td>[flt]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[1.3852E-4]</td>
<td></td>
<td>Imaging only.</td>
</tr>
<tr>
<td>WCS_CROTA2</td>
<td>CROTA2</td>
<td>Rotation of axes in degrees.</td>
<td>any</td>
<td>[flt]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[113.45]</td>
<td></td>
<td>Imaging only.</td>
</tr>
<tr>
<td>WCS_RotMatrix</td>
<td>COi_j</td>
<td>WCS Rotation Matrix elements.</td>
<td>any</td>
<td>[flt]</td>
<td>[flt]</td>
<td>[]</td>
<td>[]</td>
<td>[1.3852E-4]</td>
<td></td>
<td>Imaging only.</td>
</tr>
</tbody>
</table>

Array Detector Keywords

Heterodyne Keywords
SOFIA Keywords | FITS Keywords Rendering

- **Parameter**: Parameter name.
- **FITS Keyword**: FITS keyword name.
- **Comment**: Description of the parameter.
- **HDU Representation**: Representation in the header data unit.
- **Type**: Type of the parameter.
- **Units**: Units of measurement.
- **Range**: Range of the parameter.
- **Example**: Example value.
- **Is Required**: Whether the parameter is required.
- **Source**: Source of the parameter.

Data Structure Keywords

Chopping Keywords

- **Parameter**: Parameter name.
- **FITS Keyword**: FITS keyword name.
- **Comment**: Description of the parameter.
- **HDU Representation**: Representation in the header data unit.
- **Type**: Type of the parameter.
- **Units**: Units of measurement.
- **Range**: Range of the parameter.
- **Example**: Example value.
- **Is Required**: Whether the parameter is required.
- **Source**: Source of the parameter.

- **ChopFrequency**: Chop frequency.
- **ChopProfile**: Chopping profile: 2 or 3 point.
- **ChopSymmetry**: Chopping symmetry: symmetric or asymmetric.
- **ChopAmplitude_1**: Chop amplitude 1.
- **ChopAmplitude_2**: Chop amplitude 2.
- **ChopCoordSys**: MCCS Coordinate system for chip, tilt, and angle. Added SIRF in revF.
- **ChopAngle**: Calculated angle in the sky_coord sys reference frame. Range increased in revF from -+180 to -+360.
- **ChopTip**: Calculated tip in the sky_coord sys reference frame. Range increased in revF from -+180 to -+360.

8/22/18, 11:58 PM

7 of 9
Nodding Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodDwellTime</td>
<td>NODTIME</td>
<td>Nod time</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>s</td>
<td>[]</td>
<td>[300.0]</td>
<td>Nodding</td>
</tr>
<tr>
<td>NodCycles</td>
<td>NODN</td>
<td>Nod cycles.</td>
<td>any</td>
<td>[integer]</td>
<td>[int]</td>
<td>[]</td>
<td>[30]</td>
<td></td>
<td>Nodding</td>
</tr>
<tr>
<td>NodSettleTime</td>
<td>NODSETL</td>
<td>Nod settle time</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>s</td>
<td>[]</td>
<td>[0.0556]</td>
<td>Nodding</td>
</tr>
<tr>
<td>NodAmplitude</td>
<td>NODAMP</td>
<td>Nod amplitude on sky.</td>
<td>any</td>
<td>[general]</td>
<td>[flt]</td>
<td>arcsec</td>
<td>[]</td>
<td>[30.0]</td>
<td>Nodding</td>
</tr>
<tr>
<td>NodBeam</td>
<td>NODBEAM</td>
<td>Current nod beam position</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[A]</td>
<td></td>
<td>Nodding/ Chopping</td>
</tr>
<tr>
<td>NodPattern</td>
<td>NODPATT</td>
<td>Nodding pattern, one cycle. Added BA in revF, changed to allowing any string in revF requested by pipeline</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>['ABBA', 'AB', 'BA', 'CUSTOM']</td>
<td>Nodding</td>
<td></td>
</tr>
</tbody>
</table>

Dithering Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DitherCoordinate</td>
<td>DTHCRSYS</td>
<td>Dither coordinate, needed by DPS for FORCAST, FLITECAM</td>
<td>any</td>
<td>[str]</td>
<td>[str]</td>
<td>enum [SIRF, TARF, ERF]</td>
<td>[SIRF]</td>
<td>Dithering</td>
<td>SI / DCS, not from MCCS :</td>
</tr>
<tr>
<td>DitherXOffset</td>
<td>DTHXOFF</td>
<td>Dither offset in X axis (arcseconds)</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>arcsec</td>
<td>[]</td>
<td>[2.5]</td>
<td>Dithering</td>
</tr>
<tr>
<td>DitherYOffset</td>
<td>DTHYOFF</td>
<td>Dither offset in Y axis (arcseconds)</td>
<td>any</td>
<td>[float]</td>
<td>[flt]</td>
<td>arcsec</td>
<td>[]</td>
<td>[2.5]</td>
<td>Dithering</td>
</tr>
<tr>
<td>DitherPattern</td>
<td>DTHPATT</td>
<td>Dither pattern, added NONE in revF</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>enum [NONE, 3-POINT, 5-POINT, 9-POINT, CUSTOM]</td>
<td>[9-POINT]</td>
<td>Dithering</td>
<td></td>
</tr>
<tr>
<td>DitherPositions</td>
<td>DTHNPOS</td>
<td>Number of dither positions.</td>
<td>any</td>
<td>[integer]</td>
<td>[int]</td>
<td>[]</td>
<td>[9]</td>
<td>Dithering</td>
<td></td>
</tr>
<tr>
<td>DitherPositionIndex</td>
<td>DTHINDEX</td>
<td>Dither position index.</td>
<td>any</td>
<td>[integer]</td>
<td>[int]</td>
<td>[]</td>
<td>[5]</td>
<td>Dithering</td>
<td></td>
</tr>
</tbody>
</table>

Mapping Keywords

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapCoordSys</td>
<td>MAPCRSYS</td>
<td>Coordinate system for mapping/scanning.</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>enum [EQUATORIAL, GALACTIC, ECLIPTIC, USER]</td>
<td>GALACTIC</td>
<td>Mapping</td>
<td></td>
</tr>
<tr>
<td>MapPositionsX</td>
<td>MAPNXPOS</td>
<td>Number of map positions in X</td>
<td>any</td>
<td>[integer]</td>
<td>[int]</td>
<td>[]</td>
<td>[4]</td>
<td>Mapping</td>
<td></td>
</tr>
</tbody>
</table>
MapPositionsY
MAPNYPOS
Number of map positions in Y
any
[integer]
[int]
[]
[4]
Mapping

MapIntervalX
MAPINTX
Mapping step interval in X
primary
[general]
[flt]
[arcmin]
[]
[8.5]
Mapping

MapIntervalY
MAPINTY
Mapping step interval in Y
any
[general]
[flt]
[arcmin]
[]
[8.5]
Mapping

Scanning Keywords (Constant Velocity)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FITS Keyword</th>
<th>Comment</th>
<th>HDU</th>
<th>Representation</th>
<th>Type</th>
<th>Units</th>
<th>Range</th>
<th>Example</th>
<th>Is Required</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScanStartRA</td>
<td>SCNRA0</td>
<td>Start of scan - RA ,</td>
<td>any</td>
<td>[general] [hh:mm:ss.s]</td>
<td>[flt]</td>
<td>[str]</td>
<td>Hours</td>
<td>interval [0,24]</td>
<td>[9.0230]</td>
<td>[5:35:17.3]</td>
</tr>
<tr>
<td>ScanStartDec</td>
<td>SCNDEC0</td>
<td>Start of scan - Dec,</td>
<td>any</td>
<td>[general] [dd:mm:ss]</td>
<td>[flt]</td>
<td>[str]</td>
<td>Degrees</td>
<td>interval [-90,90]</td>
<td>[47.3465]</td>
<td>[-5:23:28]</td>
</tr>
<tr>
<td>ScanEndRA</td>
<td>SCNRAF</td>
<td>End of scan - RA.</td>
<td>any</td>
<td>[general] [hh:mm:ss.s]</td>
<td>[flt]</td>
<td>[str]</td>
<td>Hours</td>
<td>interval [0,24]</td>
<td>[9.0305]</td>
<td>[5:40:32.5]</td>
</tr>
<tr>
<td>ScanEndDec</td>
<td>SCNDECF</td>
<td>End of scan - Dec.</td>
<td>any</td>
<td>[general] [dd:mm:ss]</td>
<td>[flt]</td>
<td>[str]</td>
<td>Degrees</td>
<td>interval [-90,90]</td>
<td>[47.3465]</td>
<td>[-5:23:28]</td>
</tr>
<tr>
<td>ScanRate</td>
<td>SCNRATE</td>
<td>Scan rate</td>
<td>any</td>
<td>[general] [flt]</td>
<td>[arcsec/s]</td>
<td>[]</td>
<td>[]</td>
<td>[10.0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScanDirection</td>
<td>SCNDIR</td>
<td>Scan direction,</td>
<td>any</td>
<td>[general] [flt]</td>
<td>degrees</td>
<td>[]</td>
<td>[]</td>
<td>[-35.5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScanType (New)</td>
<td>SCANTYPE</td>
<td>Scan type, added in revG, requested by pipeline</td>
<td>any</td>
<td>[string]</td>
<td>[str]</td>
<td>[]</td>
<td>[]</td>
<td>["BOX","LISSAJOUS","SWEEP"]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keyword Descriptions revG May 2018

Observation Keywords

Datasource
FITS Name: DATASRC
FITS Type: str
Description: Overall source/type of data: ASTRO = Astronomical observation; CALIBRATION = calibration data; LAB = Laboratory data; TEST = Test data; FIRSTPOINT = SOFIA first pointing observation; OTHER = Any other source not listed here. If datasource is set to "CALIBRATION", the host file will be made public immediately upon ingestion.
Requirement: Absolutely Required for Archive Ingestion*

ObservationType -- Updated!
FITS Name: OBSTYPE
FITS Type: str
Description: The type of observation such as an astronomical exposure or a particular type of calibration exposure: OBJECT = astronomical object; STANDARD = Astronomical flux standard for calibration; LAMP = Calibration lamp; FLAT = Flat-field exposure for calibration; DARK = Dark current exposure for calibration, STANDARD_WAVECAL for FIFI-LS
Requirement: Required

SourceType -- Updated!
FITS Name: SRCTYPE
FITS Type: str
Description: Source type. Maps to AOR SourceType. Needed for reduction of slit spectra, but useful for other data types as well.
Requirement: Required

KeywordDictionaryVersion
FITS Name: KWDICT
FITS Type: str
Description: SOFIA keyword dictionary version. Since the keyword dictionary is now a part of the DCS ICD (DCS_SI_01, this keyword should reference which version of the ICD is being used. The document rev (A, B, C, etc...) should be appended to the string 'DCS_SI_01' with an underscore (see example).
Requirement: Required

ObservationID
FITS Name: OBS_ID
FITS Type: str
Description: The unique identifier for any given data file, meant to provide ready timing and sequencing information at a glance to the user. It is created at the same time that the data file is first written, in a format common to all instruments (and thus mandated by the observatory). The OBS_ID is assigned to saved datasets only. Some test data may be taken during a flight for immediate diagnostic purposes, but not saved (e.g., a snapshot to verify pointing), in which case there would be no point in assigning an OBS_ID, but we note that the default should almost always be to save the data and thus assign this keyword. The OBS_ID number is distinct from the AOR_ID. The AOR_ID is the unique identifier for an AOR which can, in principle, generate multiple files to be saved. Each of these files would have a unique OBS_ID. The mapping from AOR_ID to OBS_ID is one-to-many, i.e., one AOR can produce multiple data files. Note that the converse is not true -- one data file cannot be the product of multiple AORs. We suggest the following as a format for the OBS_ID keyword: MMMMM[M][C]nnn. Where: MMM = Mission ID (see MissionID) -- Data not taken as part of a SOFIA mission should set MMM to current date or some other suitable value; C = Channel identifier (optional) -- preferably a letter (B for Blue, S for short, etc...); nnn = Observation sequence number -- The sequence should be reset at mission start and advanced all the way through mission close-out (as defined my the MCCS), which should allow for capture of pre- and post-flight data -- This field will have a minimum of three digits (typical expected length), but more digits will be allowed as necessary.
Requirement: Absolutely Required for Archive Ingestion*

ImageID
FITS Name: IMAGEID
FITS Type: int
Description: The image identification when there are multiple images for an observation within the SAME file (e.g. images stored as FITS extensions).
Requirement: Multiple images in a single file for an observation, e.g. dithering, mapping, etc...

ObjectName
FITS Name: OBJECT
FITS Type: str
Description: The object name as given by the observer, or as specified by the flight plan.
Requirement: Required

AOTUniqueID
FITS Name: AOT_ID
FITS Type: str
Description: Unique Astronomical Observation Template (AOT) identifier as defined in SI-DCS ICD. AORs generated from SOFIA SSpot are based on the [SI]-DCS ICD which defines AOTs, the combination of the AOT name, ICD document number, and the ICD version number can uniquely identify an AOT version. Note that the ICD version number is important, AOTs in different versions of ICD can sometimes have conflict values.
Requirement: If AOT in use.

AORUniqueID
FITS Name: AOR_ID
FITS Type: str
Description: Unique Astronomical Observation Request (AOR) identifier. The AOR_ID is assigned during the creation of the final version of an AOR to be used in flight planning. The value of this keyword should be equivalent to the AOR/ID tag in the AOR document. During Early Science, the AOR ID will be equivalent to the proposed observation ID and will be documented in the observing plan. The AOR_ID should not be reused once data is taken for this AOR to define a different observation. For example, 90_0004_1 has been observed for SA 114-656, it should not be reused to observe SA 114-670 even if all other parameters are exactly the same.
Requirement: If observation associated with DCS AOR

FileGroupID
FITS Name: FILEGPID
FITS Type: str
Description: Identifier for a group of images stored as separate data files. This is the mechanism for associating multiple data files that should be considered together. Can be defined by the user -- not necessarily unique in the SOFIA mission. For example, suppose a map of Orion is made such that each individual map point is stored in a separate file. The user could then set this keyword to something like "OrionMap_20040101" for each of the files so that they can be associated later.
Requirement: SI

FileGroupB -- New!
FITS Name: FILEGP_B
FITS Type: str
Description: Identifier for a group of images stored as separate data files. This is the mechanism for associating multiple data files that should be considered together. Can be defined by the user -- not necessarily unique in the SOFIA mission. For example, suppose a map of Orion is made such that each individual map point is stored in a separate file. The user could then set this keyword to something like "OrionMap_20040101" for each of the files so that they can be associated later.
Requirement: SI

FileGroupR -- New!
FITS Name: FILEGP_R
FITS Type: str
Description: Identifier for a group of images stored as separate data files. This is the mechanism for associating multiple data files that should be considered together. Can be defined by the user -- not necessarily unique in the SOFIA mission. For example, suppose a map of Orion is made such that each individual map point is stored in a separate file. The user could then set this keyword to something like "OrionMap_20040101" for each of the files so that they can be associated later.
Requirement: SI

Data Processing Related Keywords
ASSC_MSN -- New!
FITS Name: ASSC_MSN
FITS Type: str
Description: List of all mission IDs used in generating a combined output file.
Requirement: LEVEL 2/3/4 data, if product is associated with multiple missions

ASSC_FRO -- New!
FITS Name: ASSC_FRO
FITS Type: flt
Description: List of all frequencies used in generating a combined output file.
Requirement: LEVEL 2/3/4 data, if product is associated with multiple frequencies

ProcessingStatus
FITS Name: PROCSTAT
FITS Type: str
Description: Status of any processing applied to the data, as defined in the SOFIA Project Data Management Plan:
LEVEL_0 = Raw engineering data for diagnostic purposes, generally not intended for archiving;
LEVEL_1 = Raw, uncalibrated science data in FITS or SDFITS format with complete header adhering to the SOFIA Keyword Dictionary; LEVEL_2 = Processed science data corrected for instrument artifacts; LEVEL_3 = Flux-calibrated science data (e.g. BUNIT keyword takes image to MJy/sr); LEVEL_4 = Higher order products.
Requirement: Required for all SI, FLITECAM already has

HeaderStatus
FITS Name: HEADSTAT
FITS Type: str
Description: Status of FITS header data (updated during post-processing). ORIGINAL: Header values are from original raw data file and have not been modified. UNKNOWN: header values have not been reviewed/verified. CORRECTED: header values have been corrected as part of post-processing, see HISTORY records for details. ERROR: There is a problem with the header values that has not been fixed, see COMMENT records for details. SI would set HEADSTAT = 'ORIGINAL" for raw data acquired on the AC. MODIFIED: Headers have been changed but are not yet fully CORRECTED.
Requirement: Required

DataQuality
FITS Name: DATAQUAL
FITS Type: str
Description: Indicates overall data quality; indicator of scientific reliability for the dataset. Values are: NOMINAL: no outstanding issues with processing/calibration/observing conditions. USABLE: minor issue(s) with processing/calibration/conditions but should still be scientifically valid (perhaps with larger than usual uncertainties); see HISTORY records for details. PROBLEM: significant issue(s) encountered with processing, calibration, or observing conditions; may not be scientifically useful (depending on application); see HISTORY records for details. In general, these cases are addressed through manual re-processing before archiving and distribution. FAIL: data could not be processed successfully for some reason. These cases are rare and generally not archived or distributed to the GI.

NumberOfSpectral
FITS Name: N_SPEC
FITS Type: int
Description: Number of spectral, optional for spectroscopic modes.
Requirement: Required

AssociatedAORIDs
FITS Name: ASSC_AOR
FITS Type: str
Description: List of all unique input AOR_IDs used in generating a combined output file.
Requirement: LEVEL 2/3/4 data, if product is associated with multiple DCS AORs

PipelineName
FITS Name: PIPELINE
FITS Type: str
Description: Name of pipeline/processing software used to generate file (e.g. “FDRP v1.0.0”). LEVEL 2/3/4 data only.
PipelineVersion
FITS Name:PIPEVERS
FITS Type: str
Description: Full release tag for pipeline that produced the file (e.g. “FDRP_1.0.0_UT2013_4_1”). LEVEL 2/3/4 data only.

ProductType
FITS Name:PRODTYPE
FITS Type: str
Description: Type of product produced by the processing software or pipeline, as defined in SI-DCS ICD. Should be simple identifier that the GI can use to look up in the processing handbook or ICD. ID should include an identifier for the software that was used to produce the file (e.g. "DRIP_XXX"). For example, the FORCAST product types are: DRIP-UNDISTORTED, DRIP-MERGED, DRIP-COADDED, DRIP-REDALL. Generally, the SI will not need to set this keyword for raw data.

DCSFileRevision
FITS Name:FILEREV
FITS Type: str
Description: File revision identifier, to be inserted by archive ingestion tasks if file was modified as part of post-processing. Change details to be documented using HISTORY records at the end of the header. String value, typically a lower case 'r' (ASCII 114) immediately followed by a integer greater than zero in decimal format with no padding or leading zeros. E.g., "r1" not "r01". The SI will not need to set this keyword for raw data; included here for completeness.
Requirement: If file changed in post-processing.

Mission Management Keywords

ObservingPlanUniqueID
FITS Name:PLANID
FITS Type: str
Description: The observing plan which contains all the AORs. The value of this keyword should be equivalent to <AOR/Reference/ObservingPlan> in the AOR document.
Requirement: If observation associated with an observing plan.

AircraftDeployment
FITS Name:DEPLOY
FITS Type: str
Description: Aircraft base of operations for current instrument run.
Requirement: Required

MissionID
FITS Name:MISSN-ID
FITS Type: str
Description: Unique mission identifier, as specified in the Mission Plan and returned by the MCCS. Current spec for mission ID includes a date stamp, instrument ID, and mission type indicators.
Requirement: Absolutely Required for Archive Ingestion

FlightLeg
FITS Name:FLIGHTLG
FITS Type: int
Description: Flight leg identifier for given mission ID.
Requirement: Required

Origination Keywords

Origin
FITS Name:ORIGIN
FITS Type: str
Description: Organization or institution responsible for creation of FITS file.
Requirement: Required

Observers
FITS Name: OBSERVER
FITS Type: str
Description: Observer name(s).
Requirement: Required

FileCreator
FITS Name: CREATOR
FITS Type: str
Description: Software task which wrote the FITS file (including version information).
Requirement: Required

TelescopeOperator
FITS Name: OPERATOR
FITS Type: str
Description: The telescope operator for the mission. Can be obtained from list of active MCCS sessions (get list=active_session) if needed.
Requirement: Required

Filename
FITS Name: FILENAME
FITS Type: str
Description: Name of host file. The FILENAME keyword allows for different stages in the treatment of a dataset: raw, calibrated, custom reduced, pipelined, or reduced at an intermediate stage. Files resulting from actions taken upon a given raw dataset will all have the same OBS_ID, but could have different values of the FILENAME keyword. For the FILENAME format, we recommend using OBSID as a prefix, and attach qualifiers denoting the stage of treatment and format.
Requirement: Required

Date and Time Keywords

CreationDate
FITS Name: DATE
FITS Type: str
Description: UTC date of file creation in date/time format (yyyy-mm-ddThh:mm:ss.ssss); see FITS standard for additional detail.
Requirement: Required

ObservationDate
FITS Name: DATE-OBS
FITS Type: str
Description: UTC date of observation at the start of the exposure in date/time format (yyyy-mm-ddThh:mm:ss.ssss); see FITS standard for additional detail.
Requirement: Absolutely Required for Archive Ingestion*

ObservationStartUTC
FITS Name: UTCSTART
FITS Type: str
Description: UTC time at the start of the exposure.
Requirement: Required

ObservationEndUTC
FITS Name: UTCEND
FITS Type: str
Description: UTC time at the end of the exposure.
Requirement: Required

Environmental Keywords
WaterVaporZenith_Start
FITS Name: WVZ_STA
FITS Type: flt
Description: Integrated precipitable water vapor to the zenith, running average of previous 60 seconds. Start of observation.
Requirement: Required

WaterVaporZenith_End
FITS Name: WVZ_END
FITS Type: flt
Description: Integrated precipitable water vapor to the zenith, running average of previous 60 seconds. End of observation.
Requirement: Required

static_air_temp
FITS Name: TEMP_OUT
FITS Type: flt
Description: Static air temperature, as returned by the MCCS at start of observation.
Requirement: Required

PrimaryMirrorTemperature_1 -- Updated!
FITS Name: TEMPPRI1
FITS Type: flt
Description: Primary mirror temp #1, at start of observation.
Requirement: Required

PrimaryMirrorTemperature_2 -- Updated!
FITS Name: TEMPPRI2
FITS Type: flt
Description: Primary mirror temp #2, at start of observation.
Requirement: Required

PrimaryMirrorTemperature_3 -- Updated!
FITS Name: TEMPPRI3
FITS Type: flt
Description: Primary mirror temp #3, at start of observation.
Requirement: Required

SecondaryMirrorTemperature_1 -- Updated!
FITS Name: TEMPSEC1
FITS Type: flt
Description: Temperature of secondary mirror, at start of observation.
Requirement: Required

Aircraft Keywords

Altitude_Start
FITS Name: ALTI_STA
FITS Type: flt
Description: Aircraft altitude from mean sea level according to MCCS (baro corrected), at start of observation.
Requirement: Required

Altitude_End
FITS Name: ALTI_END
FITS Type: flt
Description: Aircraft altitude from mean sea level according to MCCS (baro corrected), at end of observation.
Requirement: Required

Airspeed
FITS Name: AIRSPEED
FITS Type: flt
Description: True aircraft airspeed, as returned by the MCCS at start of observation.
Requirement: Required

GroundSpeed
FITS Name: GRD SPEED
FITS Type: flt
Description: Current ground speed of aircraft, as returned by the MCCS at start of observation.
Requirement: Required

Latitude_Start
FITS Name: LAT_STA
FITS Type: flt
Description: Current aircraft latitude, as returned by the MCCS at start of observation.
Requirement: Required

Longitude_Start
FITS Name: LON_STA
FITS Type: flt
Description: Current aircraft longitude, as returned by the MCCS at start of observation. W is negative, E is positive, from prime meridian.
Requirement: Required

Latitude_End
FITS Name: LAT_END
FITS Type: flt
Description: Current aircraft latitude, as returned by the MCCS at end of observation.
Requirement: Required

Longitude_End
FITS Name: LON_END
FITS Type: flt
Description: Current aircraft longitude, as returned by the MCCS at end of observation. W is negative, E is positive, from prime meridian.
Requirement: Required

Heading
FITS Name: HEADING
FITS Type: flt
Description: True aircraft heading, as returned by the MCCS at start of observation.
Requirement: Required

TrackAngle
FITS Name: TRACKANG
FITS Type: flt
Description: Aircraft track angle, as returned by the MCCS at start of observation.
Requirement: Required

Telescope Keywords

Telescope
FITS Name: TELESCOP
FITS Type: str
Description: Telescope used for the observation. Usually SOFIA but can also be telescope an another observatory.
Requirement: Required

TelescopeConfig
FITS Name: TELCONF
FITS Type: str
Description: Telescope configuration. The configuration defines the mirrors, correctors, light paths, etc... On SOFIA, this should be controlled by the MCCS.
Requirement: Required
TelescopeRA
FITS Name: TELRA
FITS Type: flt
Description: Right ascension of SI boresight (SIBS), as returned by the telescope control system (J2000). Representation may be either decimal hours or HH:MM:SS.s.
Requirement: Required

TelescopeDec
FITS Name: TELDEC
FITS Type: flt
Description: Declination of SI boresight, as returned by the telescope control system (J2000). Representation may be either decimal degrees or DD:MM:SS.
Requirement: Required

TelescopeVPA -- Updated!
FITS Name: TELVPA
FITS Type: flt
Description: Vertical Position Angle (VPA) of SI boresight, as returned by the telescope control system in ICRS (J2000) -- Is this really VPA or ROF? -- TBC: Latest updates from Allan Meyer: ROF (given in the flight plans) is the Zenith PA (from North through East). For EXES it means that slit PA=ROF+270.
Requirement: Required

TelescopeEquinox
FITS Name: TELEQUI
FITS Type: str
Description: Equinox of returned RA/Dec/VPA.
Requirement: Required

LastRewindUTC
FITS Name: LASTREW
FITS Type: str
Description: UTC time of last telescope rewind.
Requirement: Required

TelescopeFocus_Start -- Updated!
FITS Name: FOCUS_ST
FITS Type: flt
Description: Telescope focus: Measured position of the FCM focus mechanism in the T direction -- as returned by the TA (microns) at observation start.
Requirement: Required

TelescopeFocus_End -- Updated!
FITS Name: FOCUS_EN
FITS Type: flt
Description: Telescope focus: Measured position of the FCM focus mechanism in the T direction -- as returned by the TA (microns) at observation end.
Requirement: Required

TelescopeElevation
FITS Name: TELEL
FITS Type: flt
Description: Telescope elevation above the horizon. At start of observation.
Requirement: Required

TelescopeCrossElevation
FITS Name: TELXEL
FITS Type: flt
Description: Telescope cross elevation in the cavity reference frame. At start of observation.
Requirement: Required

TelescopeLineOfSight
FITS Name: TELLOS
FITS Type: flt
Description: Telescope line of sight angle in the cavity reference frame. At start of observation.
Requirement: Required

TasculStatus
FITS Name: TSC-STAT
FITS Type: str
Description: State of the TASCU system at the end of the current observation as returned by the MCCS. See specification in MCCS_SI_04.
Requirement: Required

TasculFBCStatus -- Updated!
FITS Name: FBC-STAT
FITS Type: str
Description: State of the flexible body compensation system at the end of the current observation as returned by the TA. See specification in TA-MCCS-F.
Requirement: Required

ObservationRequestRA
FITS Name: OBSRA
FITS Type: flt
Description: Requested right ascension for the observation before any manual "tweaking", either from the instrument control software, an AOR, or the flight executor. This may be different from the actual object coordinates and/or telescope coordinates. Representation may be either decimal hours or HH:MM:SS.s. Reference frame can be specified in the comment field (ICRS recommended) and equinox specified using the Equinox keyword.
Requirement: Required

ObservationRequestDec
FITS Name: OBSDEC
FITS Type: flt
Description: Requested declination for the observation before any manual "tweaking", either from the instrument control software, an AOR, or the flight executor. This may be different from the actual object coordinates and/or telescope coordinates. Representation may be either decimal degrees or DD:MM:SS. Reference frame can be specified in comment field (ICRS recommended) and equinox specified using the Equinox keyword.
Requirement: Required

ObservationRequestEquinox
FITS Name: EQUINOX
FITS Type: flt
Description: Equinox for ObservationRA and ObservationDec. Does not apply to TelescopeRA/Dec which are fixed to ICRS (J2000). See FITS standard for additional detail. If not specified, equinox is assumed to be year 2000.
Requirement: Required

ZenithAngle_Start
FITS Name: ZA_START
FITS Type: flt
Description: Zenith angle of telescope pointing at start of acquisition. Use telescope elevation to calculate ZA.
Requirement: Required

ZenithAngle_End
FITS Name: ZA_END
FITS Type: flt
Description: Zenith angle of telescope pointing at end of acquisition. Use telescope elevation to calculate ZA.
Requirement: Required

TrackingMode -- Updated!
FITS Name: TRACMODE
FITS Type: str
Description: SOFIA Tracking mode (last commanded). See MCCS_SI_04 for description of states and modes.
Requirement: Tracking

TrackingError
FITS Name: TRACERR
FITS Type: log
Description: Flag to indicate if there was a tracking error during the observation. Ideally the SI software would monitor the tracking mode (ta_trc.trc_status_table.main_op_mode_id) for any error/abnormalities. If an error does occur, the TRACERR would then be set to T.
Requirement: Tracking

Data Collection Keywords

isChopping
FITS Name: CHOPPING
FITS Type: log
Description: Chopping flag
Requirement: If mode in use.

isNodding
FITS Name: NODDING
FITS Type: log
Description: Nodding flag -- this should be set if the SI is executing a repeated nod pattern, for example (ABBA) (ABBA), etc...
Requirement: If mode in use.

isDithering
FITS Name: DITHER
FITS Type: log
Description: Dithering flag
Requirement: If mode in use.

isMapping
FITS Name: MAPPING
FITS Type: log
Description: Mapping flag.
Requirement: If mode in use.

isScanning
FITS Name: SCANNING
FITS Type: log
Description: Scanning flag.
Requirement: If mode in use.

Annotation Keywords

Instrument Keywords

Instrument
FITS Name: INSTRUME
FITS Type: str
Description: Instrument name, as specified in the SI-DCS ICD.
Requirement: Absolutely Required for Archive Ingestion*

Datatype
FITS Name: DATATYPE
FITS Type: str
Description: Type of observation data: Image, Spectral, or Other.
Requirement: Required

InstrumentConfiguration
FITS Name: INSTCFG
FITS Type: str
Description: Instrument configuration - simple description, as specified in the SI-DCS ICD. e.g. IMAGING, GRISM,
SPECTROSCOPY, etc...

Requirement: Required

InstrumentMode -- Updated!

FITS Name: INSTMODE
FITS Type: str
Description: Instrument observing mode - simple description, as specified in the SI-DCS ICD. e.g. C2N, MAPPING, TOTAL_POWER, etc...
Requirement: Required

MCCSMode

FITS Name: MCCSMODE
FITS Type: str
Description: SI mode as defined in the MCCS_SI_04.
Requirement: Required

ExposureTime

FITS Name: EXPTIME
FITS Type: flt
Description: Total effective on-source exposure time of the observation. This is the total time during which photons from the object of interest are collected by the detector. It includes any shutter corrections (which may not apply for most (all?) SOFIA instruments), and nodding/chopping corrections, and should match the algorithm(s) supplied for any time estimation tools (e.g. SITE). For FITS, EXPTIME should be used instead of the FITS specification EXPOSURE. ExposureTime should be specified for all images in a data file.
Requirement: Required

SpectralElement1

FITS Name: SPECTEL1
FITS Type: str
Description: First spectral element (filter, grism, etc...) as specified in SI-DCS ICD. Need only contain the unique identifier from the SI-DCS ICD; more detailed filter/grism/mixer can be stored in instrument-specific keywords.
Requirement: Absolutely Required for Archive Ingestion

SpectralElement2

FITS Name: SPECTEL2
FITS Type: str
Description: Second spectral element (filter, grism, etc...) as specified in SI-DCS ICD. Need only contain the unique identifier from the SI-DCS ICD; more detailed filter/grism/mixer can be stored in instrument-specific keywords. Set to "NONE" If no second element in use.
Requirement: Absolutely Required for Archive Ingestion

InstrumentSlit

FITS Name: SLIT
FITS Type: str
Description: Slit identifier, as specified in the SI-DCS ICD. Need only contain the unique identifier; more detailed info can be stored in instrument-specific keywords.
Requirement: Spectroscopy configs: if slit in use.

WavelengthCentral

FITS Name: WAVECENT
FITS Type: flt
Description: Central wavelength of observation for imaging modes. This is a rough figure only, intended to be used for archive searches across all SOFIA instruments.
Requirement: Imaging modes only.

Resolution

FITS Name: RESOLUN
FITS Type: flt
Description: Approximate spectral resolution of observation for spectroscopy modes, expressed as \(R = \frac{c}{\Delta V} = \frac{\lambda}{\Delta \lambda} \). This is a rough figure only, intended to be used for archive searches across all SOFIA instruments.
Requirement: Spectroscopy modes only.
Detector Channel
FITS Name: DETCHAN
FITS Type: str
Description: Detector Channel as specified in the SI-DCS ICD.
Requirement: FORCAST and FIFI-LS should populate these.

Total Integration Time
FITS Name: TOTINT
FITS Type: flt
Description: Total integration time (s)
Requirement: FORCAST

Array Detector Keywords

Detector
FITS Name: DETECTOR
FITS Type: str
Description: Detector name.
Requirement: Array instruments only.

Detector Size
FITS Name: DETSIZE
FITS Type: str
Description: Unbinned detector size in pixels.
Requirement: Array instruments only.

Pixel Scale
FITS Name: PIXSCAL
FITS Type: flt
Description: Projected pixel scale on the sky.
Requirement: Array instruments only.

Subarrays
FITS Name: SUBARRNO
FITS Type: int
Description: Number of sub arrays used in data acquisition. Full array assumed if absent.
Requirement: If subarrays in use.

Subarray Size
FITS Name: SUBARR%2d
FITS Type: str
Description: The log unbinned size of the n-th subarray in section notation.
Requirement: If subarrays in use.

Science Instrument Boresight X
FITS Name: SIBS_X
FITS Type: flt
Description: Location of SI boresight in pixel space -- x_si.
Requirement: Array instruments only.

Science Instrument Boresight Y
FITS Name: SIBS_Y
FITS Type: flt
Description: Location of SI boresight in pixel space -- y_si.
Requirement: Array instruments only.

WCSCTYPE
FITS Name: CTYPEn
FITS Type: str
Description: WCS: Coordinate type and projection for n-th axis. See list of supported projections at http://tdc-www.harvard.edu/wcstools/wcstools.fits.html.
Requirement: Imaging only.

WCS_CRPIX
FITS Name: CRPIXn
FITS Type: flt
Description: WCS: pixel coordinates of the reference point of the n-th axis to which the projection and the rotation refer.
Requirement: Array instruments only.

WCS_CRVAL
FITS Name: CRVALn
FITS Type: flt
Description: WCS: reference pixel coordinate for n-th axis as right ascension and declination or longitude and latitude in decimal degrees. FITS Comment field should include estimate of uncertainty in absolute pointing (See TBD Document).
Requirement: Imaging only.

WCS_CDELT
FITS Name: CDELTn
FITS Type: flt
Description: WCS: Plate scale in degrees per pixel for the n-th axis at the reference pixel. Either the CDi_j *or* the CDELT/CROTA keywords should be used, but not both. FITS comment field should include estimate of uncertainty based on known distortion or other optical effects.
Requirement: Imaging only.

WCS_CROTA2
FITS Name: CROTA2
FITS Type: flt
Description: WCS: Rotation of axes in degrees. WCS FITS convention is to use CROTA2. Either the CDi_j *or* the CDELT/CROTA keywords should be used, but not both. FITS comment field should include estimate of uncertainty in TA rotation of field (see TBD Document).
Requirement: Imaging only.

WCS_RotMatrix
FITS Name: CDi_j
FITS Type: flt
Description: WCS: Rotation matrix for WCS -- CD1_1, CD1_2, CD2_1, and CD2_2. Either the CDi_j *or* the CDELT/CROTA keywords should be used, but not both. FITS comment field should include estimate of uncertainty for each matrix element.
Requirement: Imaging only.

Heterodyne Keywords

FrontendDevice
FITS Name: FRONTEND
FITS Type: str
Description: Name of frontend device.
Requirement: Heterodyne instruments only.

BackendDevice
FITS Name: BACKEND
FITS Type: str
Description: Name of backend device.
Requirement: Heterodyne instruments only.

BackendBandwidth
FITS Name: BANDWID
FITS Type: flt
Description: Total bandwidth of heterodyne backend (Hz).
Requirement: Heterodyne instruments only.
SystemTemperature

FITS Name: TSYS
FITS Type: flt
Description: Heterodyne system temperature.
Requirement: Heterodyne instruments only.

FrequencyResolution

FITS Name: FREQRES
FITS Type: flt
Description: Nominal frequency resolution -- may differ from channel spacing.
Requirement: Heterodyne instruments only.

ReferenceFrequency

FITS Name: OBSFREQ
FITS Type: flt
Description: The observed frequency (Hz) at the reference pixel of the frequency-like axis.
Requirement: Heterodyne instruments only.

SidebandFrequency

FITS Name: IMAGFREQ
FITS Type: flt
Description: The image sideband freq (Hz) corresponding to ReferenceFrequency.
Requirement: Heterodyne instruments only.

RestFrequency

FITS Name: RESTFREQ
FITS Type: flt
Description: Rest frequency.
Requirement: Heterodyne instruments only.

VelocityDefinition

FITS Name: VELDEF
FITS Type: str
Description: The velocity definition and frame (8 characters). The first 4 characters describe the velocity definition. Possible definitions include: RADI (radio); OPTI (optical); RELA (relativistic). The second 4 characters describe the reference frame (e.g. "-LSR", "-HEL", "-OBS"). If the frequency-like axis gives a frame, then the frame in VELDEF only applies to any velocities given as columns or keywords (virtual columns).
Requirement: Heterodyne instruments only.

VelocityFrame

FITS Name: VFRAME
FITS Type: flt
Description: The radial velocity of the reference frame wrt the observer. V_frame - V_telescope.
Requirement: Heterodyne instruments only.

RadialVelocity

FITS Name: RVSYS
FITS Type: flt
Description: The radial velocity, V_source - V_telescope.
Requirement: Heterodyne instruments only.

Data Structure Keywords

Chopping Keywords

ChopFrequency

FITS Name: CHPFREQ
FITS Type: flt
Description: Measured TCM chop frequency
Requirement: Chopping
ChopProfile
FTS Name: CHPPROF
FTS Type: str
Description: Indicates whether 2 or 3 point chopping profile is being used. For 3-point chopping, the center position usually contains the object of interest. MCCS returns '0' for 2 point and '1' for 3-point.
Requirement: Chopping

ChopSymmetry -- Updated!
FTS Name: CHPSYM
FTS Type: str
Description: Indicates whether symmetric or asymmetric chopping is being used.
Requirement: Chopping

ChopAmplitude_1
FTS Name: CHPAMP1
FTS Type: flt
Description: Calculated amplitude on the sky. MCCS calculates the amplitude on the sky based on actual SMA data.
Requirement: Chopping

ChopAmplitude_2
FTS Name: CHPAMP2
FTS Type: flt
Description: Calculated second amplitude on the sky. MCCS calculates the amplitude on the sky based on actual SMA data.
Requirement: Chopping

ChopCoordSys
FTS Name: CHPCRSYS
FTS Type: str
Description: Reference frame for which MCCS computes SMA parameters. MCCS calculates sky_tip, sky_tilt, and sky_angle differently depending on which reference frame was last used in the sma.chop command. This value defaults to TARF if sma.chop has not been sent previously.
Requirement: Chopping

ChopAngle
FTS Name: CHPANGLE
FTS Type: flt
Description: Calculated angle in the sky_coord_sys reference frame. MCCS calculates the angle in the sky_coord_sys reference frame based on actual SMA data. The angle is the orientation of the chop throw with up equals zero.
Requirement: Chopping

ChopTip -- Updated!
FTS Name: CHPTIP
FTS Type: flt
Description: Calculated tip in the sky_coord_sys reference frame. MCCS calculates the tip in the sky_coord_sys reference frame based on actual SMA data.
Requirement: Chopping

ChopTilt -- Updated!
FTS Name: CHPTILT
FTS Type: flt
Description: Calculated tilt in the sky_coord_sys reference frame. MCCS calculates the tilt in the sky_coord_sys reference frame based on actual SMA data.
Requirement: Chopping

ChopPhase -- Updated!
FTS Name: CHPPHASE
FTS Type: flt
Description: Chopper phase as defined by MCCS. Time delay between the synch signal and the start of the setpoint which has the positive tilt increment with respect to the commanded offset.
Requirement: Chopping
Nodding Keywords

NodDwellTime
FITS Name: NODTIME
FITS Type: flt
Description: Total time per nod position (dwell time) -- not including nod slew time and nod settle time (see NodSettleTime).
Requirement: Nodding

NodCycles
FITS Name: NODN
FITS Type: int
Description: Number of nod cycles.
Requirement: Nodding

NodSettleTime
FITS Name: NODSETL
FITS Type: flt
Description: Time required for telescope to settle after nod slew is complete. Amount of time to wait between when telescope arrives at nod destination and when to begin integrating.
Requirement: Nodding

NodAmplitude
FITS Name: NODAMP
FITS Type: flt
Description: Nod amplitude on sky.
Requirement: Nodding

NodBeam
FITS Name: NODBEAM
FITS Type: str
Description: Current nod beam position.
Requirement: Nodding

NodPattern -- Updated!
FITS Name: NODPATT
FITS Type: str
Description: Pointing sequence pattern for one nod cycle (there could be many nod cycles in an observation). Beam A is usually assumed to contain the object of interest.
Requirement: Nodding

NodStyle
FITS Name: NODSTYLE
FITS Type: str
Description: Nodding style for coordinated chopping/nodding, e.g. nod-matched-chop, nod-perpendicular-chop, etc...
Requirement: Nodding/Chopping

NodCoordSys
FITS Name: NODCRSYS
FITS Type: str
Description: Coordinate system in which nod positions (NODPOSX,Y) and rotations are defined.
Requirement: Nodding

NodAngle
FITS Name: NODANGLE
FITS Type: flt
Description: Nod angle, clockwise from y axis defined by NODCRSYS.
Requirement: Nodding

Dithering Keywords
DitherCoordinate
FITS Name: DTHCRSYS
FITS Type: str
Description: Coordinate system for dither offsets.
Requirement: Dithering

DitherXOffset
FITS Name: DTHXOFF
FITS Type: flt
Description: Specified dither offset X for each subsequent frame, in arcseconds.
Requirement: Dithering

DitherYOffset
FITS Name: DTHYOFF
FITS Type: flt
Description: Specified dither offset Y for each subsequent frame, in arcseconds.
Requirement: Dithering

DitherPattern
FITS Name: DTHPATT
FITS Type: str
Description: Approximate shape of dither pattern.
Requirement: Dithering

DitherPositions
FITS Name: DTHNPOS
FITS Type: int
Description: Number of dither positions.
Requirement: Dithering

DitherPositionIndex
FITS Name: DTHINDEX
FITS Type: int
Description: Dither position index.
Requirement: Dithering

Mapping Keywords

MapCoordSys
FITS Name: MAPCRSYS
FITS Type: str
Description: Coordinate system in which ES map positions are defined. OBSRA/DEC are assumed to describe position of Map Center.
Requirement: Mapping

MapPositionsX
FITS Name: MAPNXPOS
FITS Type: int
Description: Number of map positions in X coordinate as defined by MAPCRSYS.
Requirement: Mapping

MapPositionsY
FITS Name: MAPNYPOS
FITS Type: int
Description: Number of map positions in Y coordinate as defined by MAPCRSYS.
Requirement: Mapping

MapIntervalX
FITS Name: MAPINTX
FITS Type: flt
Description: Mapping step interval in X coordinate as defined by MAPCRSYS. OBSRA/DEC are assumed to describe
MapIntervalY
FITS Name: MAPINTY
FITS Type: flt
Description: Mapping step interval in Y coordinate as defined by MAPCRSYS. OBSRA/DEC are assumed to describe position of Map Center.
Requirement: Mapping

Scanning Keywords (Constant Velocity)

ScanStartRA
FITS Name: SCNRA0
FITS Type: flt
Description: Start of scan - RA, coordinate system specified in keyword comment filed and EQUINOX.
Requirement: Scanning

ScanStartDec
FITS Name: SCNDEC0
FITS Type: flt
Description: Start of scan - Dec, coordinate system specified in keyword comment filed and EQUINOX.
Requirement: Scanning

ScanEndRA
FITS Name: SCNRAF
FITS Type: flt
Description: End of scan - RA, coordinate system specified in keyword comment filed and EQUINOX.
Requirement: Scanning

ScanEndDec
FITS Name: SCNDECf
FITS Type: flt
Description: End of scan - Dec, coordinate system specified in keyword comment filed and EQUINOX.
Requirement: Scanning

ScanRate
FITS Name: SCNRATE
FITS Type: flt
Description: Commanded slew rate in arcsec/sec along path.
Requirement: Scanning

ScanDirection
FITS Name: SCNDIR
FITS Type: flt
Description: Angle on sky in some coordinate system to scan from ScanStartRA/Dec, alternative specification to ScanEndRA/Dec.
Requirement: Scanning

ScanType -- New!
FITS Name: SCANTYPE
FITS Type: str
Description: Scan type HAWC (BOX | LISSAJOUS | SWEEP)
Requirement: Scanning