Star Formation at the Galactic Center

Mark Morris UCLA
Outline

- The Arena – central molecular zone, & the twisted ring
- General dearth of star formation, relative to amount of gas
- Orbital influence on star formation
- Mode of star formation: Massive young clusters vs. isolated YSOs
- Star formation in the Central parsec
- Cyclical star formation in the central parsec?
- Magnetic fields – a pitch for HAWC+
The inner Central Molecular Zone
Simulation of gas distribution in the CMZ (Sungsoo Kim + 2011)

CMZ: \(\sim 3 \times 10^7 \, M_\odot, \pm 170 \, \text{pc} \)

Warm, turbulent molecular gas Having large-scale order.

overhead view of the Molinari et al. 2011 twisted ring
Henshaw et al. 2016 Top: HNCO, extracted using SCOUSE*
*SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

Color-coded to show velocity dispersion.

H2 column density contours from Herschel observations
Possible models:

- Two spiral arms (e.g. Sofue 1995, Sawada et al. 2004)
- Closed elliptical orbit (Molinari et al. 2014)
- Open stream(s) (Kruijssen, Dale, & Longmore 2015)

Henshaw et al. 2016 (Battersby et al., in prep)
Gas distribution dominated by two roughly parallel extended features in longitude-velocity space.

Henshaw+16 → the bulk of molecular line emission associated with the 20 & 50 km/s clouds is just a small segment of one of the extended features, in agreement with the Kruijssen+15 orbit, which places the clouds at a Galactocentric radius of \sim 60 pc.

But this in inconsistent with the evidence that Sgr A East is interacting with the 50 km/s cloud and that the 20 km/s cloud is feeding gas into the central parsecs.
Star Formation in the CMZ

♦ The inhibition of star formation is attributable to the peculiar physical conditions of the CMZ:
 - High pressure, $10^2 - 10^3$ times that in Galactic disk clouds
 - Turbulence, which sets an increased threshold for gravitational collapse [Kruijssen et al. 2014; Krumholz & Kruijssen 2015, Rathborne et al. 2014]

Sources of turbulence: feedback from star formation, supernovae, feedback from the SMBH, shear instabilities, hydromagnetic waves
The star formation rate (SFR) on large scales depends on the surface mass density of gas, Σ

- The Schmidt-Kennicut law:
 \[
 \text{SFR} \sim \Sigma^\beta
 \]
 \[
 \beta \approx 1.4 \quad (\text{Kennicut 1999})
 \]

- Alternatively,
 \[
 \text{SFR density} = \varepsilon (\text{total gas mass})/(\text{free-fall time})
 \]
 Where ε is an efficiency factor $\approx 1\%$
 \[
 (\text{Schmidt 1959; Kennicutt 1998; Krumholz et al. 2012})
 \]
Longmore et al. (2013) find that the SFR is only $0.01 - 0.02 \, M_\odot \, \text{yr}^{-1}$ in the Central Molecular Zone, but it should be as much as 20 times larger by the standard estimates.
• Jeans mass: $M_{\text{Jeans}} \propto \frac{T^{3/2}}{\rho^{1/2}} \sim \frac{\Delta v^3}{\rho^{1/2}}$

• Magnetic Jeans mass $\propto \frac{B^3}{\rho^2}$

• Since the turbulent energy density is comparable to the magnetic energy density,
 \[\rho \Delta v^2 \sim \frac{B^2}{8\pi}, \]
 these are comparable,
 and large, $10^{4-5} M_\odot$

→ So the Jeans mass would tell us that massive clusters should form in the Galactic center.
Densities are also delimited by *tidal forces*; only high-density gas can resist tidal shear to form "clouds" (Güsten & Downes 1980):

\[
\begin{align*}
 n_{\text{H}_2} &> 2 \times 10^7 \text{ cm}^{-3} \left(\frac{1.6 \text{ pc}}{R}\right)^{1.8} , \ R > 1.6 \text{ pc} \\
 n_{\text{H}_2} &> 2 \times 10^7 \text{ cm}^{-3} \left(\frac{1.6 \text{ pc}}{R}\right)^3 , \quad R < 1.6 \text{ pc}
\end{align*}
\]

- e.g., at 30 pc,
 \[n_{\text{H}_2} > 5 \times 10^4 \text{ cm}^{-3} , \text{ found only in cloud cores in the Galactic disk.} \]

- or at 0.2 pc, where the massive emission-line stars of the central stellar cluster are located,
 \[n_{\text{H}_2} > 10^{10} \text{ cm}^{-3} -- \text{ a challenge for in situ formation models} \]

Lower density gas forms tidal streams....
The Mass Budget

Thermally-driven wind
\[M_w = 0.03 - 0.1 \ M_\odot \ \text{yr}^{-1} \]

Mass-loss from bulge stars
\[M_b = 0.2 \ M_\odot \ \text{yr}^{-1} \] (2 kpc)
Jungwiert et al. 2001

Star formation in CMZ
\[\dot{M}_{sf} = 0.05 - 0.2 \ M_\odot \ \text{yr}^{-1} \]

CND

Note:
\[\dot{M}_{cnd} = 0.03 - 0.05 \ M_\odot \ \text{yr}^{-1} \]
\[\dot{M}_{BH} = 10^{-5} - 10^{-8} \ M_\odot \ \text{yr}^{-1} \]

Note: these estimates aren’t balanced, so the various rates need refinement!
Candidate super star cluster progenitor gas clouds possibly triggered by close passage to Sgr A*

S. N. Longmore1,2*, J. M. D. Kruijssen3, J. Bally4, J. Ott5, L. Testi1,6, J. Rathborne7, N. Bastian2, E. Bressert7, S. Molinari8, C. Battersby4, A. J. Walsh9
The model: star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage.
Sgr B2 (Gaume et al. 1995):
- over 50 different HII regions in the complex.
- An Arches cluster in the making? (perhaps a “messier” version)

- ALMA (Adam Ginzburg+):
 120 Identifiable 3mm point sources in a 6′ x 6′ mosaic
Mode of Star Formation in the Galactic Center

→ Massive clusters versus single-star or small cluster

Start by examining relatively isolated sites of star formation
Sgr A East HII regions

Mills et al. 2011
blue: Paschen-α
green: VLA 1.4 GHz
red: SCUBA 450 µm

Coil & Ho 2000 – NH$_3$(1,1) contours

← VLA 6cm
Zhao, MRM, Goss
Bow shock or blister?

NW displacement of star & gas kinematics

Stars are not in their natal cloud

1 pc

SOFIA/FORCAST 19, 31, and 37 μm

A

B

C

D

E

FIRS 1

FIRS 2

Lau, Herter, Morris, Adams 2014

see also Yusef-Zadeh+2010
Massive stars have formed within the past 5 – 10 Myr, some isolated and distributed …..
And some in massive clusters ...
Hankins et al. See poster SOFIA/FORCAST
Circumstellar disks in the massive young GC clusters

Stolte et al. 2015

Disks around $2 < M < 15 \, M_\odot$ stars
- Primordial?
- Mass-transfer disks in binaries?
Overall massive star distribution...

White: massive stars with X-ray counterparts, presumably colliding-wind binaries

Pink: WNL, WNE, WC, OB supergiants, LBVs

Mauerhan 2010 → There are about as many isolated massive stars as there are stars in clusters

Outstanding question → are they escapees from the evaporating clusters?
Are the isolated stars escapees from cluster?

Several of the isolated stars are located near the massive clusters, which raises the question of whether they have escaped from the clusters.

Mauerhan et al. 2010

Arches:
- Massive stars escape such clusters as a result of 3-body interactions, thermal evaporation, and tidal stripping (Kim, Morris, Lee 1999)

- Long-term proper motion studies needed to determine what fraction of these stars came from clusters
Protostars

First massive YSO’s in the GC:
Deokkeun An et al. (2009) using Spitzer IRS –
3 protostar candidates with ice features characteristic of protostellar sources

→ Evidence for isolated massive star formation
An et al. 2011: 16 YSOs and 19 possible YSOs from among 107 IRS targets in the GC

Masses: $8 - 23 \, M_{\odot}$

Estimate GC SFR of $0.07 \, M_{\odot}$/yr
Yusef-Zadeh et al. 2009

24 µm MIPS point sources

YSO’s ???
The Central Parsec Cluster

R. Schödel+ 2007

Young star cluster domain (r ~ 0.5 pc)
The central cluster
(from Jessica Lu+ 2013, Tuan Do+ 2013, & Sylvana Yelda + 2014)

- Young stars distinguished from old using AO spectroscopy
- Consistent with being coeval, at an age of 4 Myr
- Mass $\sim 2.5 \pm 1 \times 10^4 M_{\odot}$
- Slightly top-heavy: $\alpha = 1.7$

 $dN/dm \sim m^{-\alpha}$
- 20% of the stars are present in a clockwise-moving disk

- Radial surface density profile: $\Sigma(R) \sim R^{-0.93}$, all within ~0.5 pc
How and where did the central cluster form?

Stellar density profile ($\sim r^{-2}$) rules out the inspiralling cluster hypothesis of Gerhard 2001 (Stostad+ 2015)

→ in situ hypothesis remains… two basic possibilities:

1) Infalling or colliding cloud

The challenge →
getting a cloud to have essentially zero angular momentum
2) Accretion disk fragmentation
 (Nayakshin+ 2007; Cuadra+ 2008; Alexander+ 2008)

Problems \(\rightarrow\) doesn’t reproduce the eccentricity distribution or the small fraction (20%) of stars presently in the disk.
A Limit Cycle, based on the assumption of a steady inward migration of gas toward the center:

1. Disk

2. Starburst in disk, triggered by accretion onto central BH or by achieving critical surface mass density.

3. Central disk evacuated

4. Stellar winds, supernovae maintain central cavity (outer disk builds up)

5. Stellar winds fade out (~10^7 yrs)

6. Disk undergoes viscous evolution and migrates into cavity
Stellar rejuvenation: mergers caused by the Kozai-Lidov mechanism

The famous G2 object is hypothesized by Witzel+14 to be a merger product resulting from the interaction of a binary with the black hole.

This dust-enshrouded stellar object is not alone – studies of G1 by Sitarski+16 show it to have similar properties, and to have undergone clear tidal interactions with Sgr A*.
Current or Recent Star Formation in the Central Parsec ???

Yusef-Zadeh+ 2015: masers

Yusef-Zadeh+2015b
Magnetic Fields are Very Important !!!!!

Chuss et al. 2002

The HAWC+ era is now upon us!
Thanks !