Heterodyne Technology for future SOFIA Instruments

Urs U. Graf
Heterodyne Spectroscopy with SOFIA

Important tool to study physical properties over a wide range of sources:

- Detailed studies of localized sources
 - multi-line studies
 - line detection experiments
 - absorption lines
 → spectral mapping: few pixels, many frequencies

- Mapping of strong lines in extended sources
 - gas kinematics
 - 3D structure
 → spatial mapping: many pixels, few frequencies

Canonical lines of interest:
- [NII]: 1461 GHz (205 μm)
- [CII]: 1900 GHz (158 μm)
- [OI]: 2060 GHz (145 μm)
- [OI]: 4745 GHz (63 μm)
Spectral Mapping: current Status

• Mixer bandwidth is limited
 - many mixers needed for full spectral coverage
 - optical pre-separation of bands may be complex

Example 4GREAT: two dichroic mirrors (D_{13}, D_{24}) and one wiregrid polarizer (WG) to separate 4 bands

Durán+ 2020, submitted
Spectral Mapping: possible new approaches

- Grating or grism as “predisperser”
 - disperse signal to N individual mixer bands
 - allows observing N lines simultaneously
 - may achieve continuous spectral coverage (however not instantaneous!) with a manageable number of conventional mixer channels
 - requires dedicated local oscillator source for each band
 - opto-mechanically challenging
 - S/N will vary strongly between bands
Spectral Mapping: possible new approaches

- **Dedicated spectral mapper (RF filter bank)**
 - frequency comb LO feeds array of mixers spectrally spaced by their IF bandwidth
 - instantaneous continuous frequency coverage
 - requires mixers with large IF bandwidth (not HEB)

Groppi+ 2019
Mixer Technology

• **SIS (superconductor-isolator-superconductor) tunnel junctions**: work horse at $f < 1$ THz
 - limited RF frequency, but large IF bandwidth

• **HEB (hot electron bolometer)**: work horse at $f > 1$ THz
 - unlimited RF frequency, but limited IF bandwidth

• **Photomixing detectors** (room temperature!)

• **Graphene bolometers**

Wang+ 2019

Lara-Avila+ 2019
Spatial Mapping: pixels, pixels, pixels!

Limitations to array size:

- **Telescope:**
 - Field of view
 - Instrument mass (600 kg; upGREAT weighs 595 kg)

- **Aircraft:**
 - Electrical power

- **Operating efficiency**
 - Tuning overhead

- **Technology, complexity, money, ...**
 - Optimistic price tag: 25,000 US-$ / pixel
Field of View

- SOFIA's FOV is 8 arcmin \varnothing, 50 arcmin2
- Beam FWHM is ~0.1 arcsec $\times \lambda / \mu$m
- Minimum beam spacing in heterodyne system is $\sim2 \times$ FWHM

\rightarrow each beam occupies ≥0.04 arcsec$^2 \times (\lambda / \mu$m$)^2$

\rightarrow SOFIA's focal plane accommodates

$\leq 4.5 \times 10^6 / (\lambda / \mum)^2$ heterodyne pixels

- Canonical lines of interest:
 - [NII]: 107 pixels
 - [CII]: 180 pixels
 - [OI$_{145}$]: 214 pixels
 - [OI$_{63}$]: 1133 pixels
 - dual polarization: take any TWO of the above
Pixel-# @1.9 THz

up to 163 pixels possible

technical reasons (LO-distribution, manufacturing) may limit to 100 or even 64 pixels
Size comparison: N159

3.25 h GREAT observing time
~15 sec / point

Okada et al. 2014
Size comparison: N159

3.25 h GREAT observing time
~15 sec / point
64 pixel array requires ~25 pointings for Nyquist sampling
⇒ 6 min plus overhead (typically ~15 min)

Okada et al. 2014
Heterodyne Array Components

- high per pixel cost, weight and complexity → need to be efficient!
- optics (mostly) and cryogenics same as for single pixel
- IF-processing/backends: every component needs to be multiplied!
- mixers and LO coupling: highest concentration of critical components and no space available...
Mixer Focal Plane: sizes and reimaging

- Pixel size in telescope focal plane $\sim 50\lambda$
 - 8.3 mm @ 1.9 THz
 - 3.3 mm @ 4.7 THz

- "natural" optical pixel size $\leq 6\lambda$
 - 1.0 mm @ 1.9 THz
 - 0.4 mm @ 4.7 THz

- "natural" mechanical pixel size: ~ 10 mm (IF-connector)

- Reimaging required (pixels individually, whole array)

- Possible approaches:
 - open structure mixers: very tight tolerances!
 - waveguide mixers: difficult machining
Focal Plane Unit

- **individual mixer approach** (upGREAT) not attractive for large array
- **multi-mixer blocks** (e.g. SuperCam, CHAI)
- **fully integrated focal plane?**
Focal Plane Unit

- individual mixer approach (upGREAT) not attractive for large array
- multi-mixer blocks (e.g. SuperCam, CHAI)
- fully integrated focal plane?
Local Oscillators

- Each mixer requires a local oscillator signal to mix with the sky signal
- Substantial amount of local oscillator power is needed
- Sources of choice:
 - ≤ 2THz: multiplied microwave sources
 - ≥ 2THz: quantum cascade lasers
- The LO power needs to be distributed to the individual mixers
LO Distribution I: Fourier Grating

- Reflective phase grating as LO multiplexer

- elegant and simple
- good efficiency (~90%)
- power balancing is challenging

upGREAT's 7-beam Fourier grating
Risacher+ 2018

81-beam Fourier grating
Gan+ 2019
LO distribution II: Multi-pixel Multiplier Chain

1.9 THz

Goldsmith 2014

Siles+ 2017

x8 Active Frequency Multiplier (AMC)

GaN Power Amplifier (PA)

210-230 GHz Triplers

630-690 GHz Triplers

1.89-2.06 THz Triplers

16-Pixel Integrated Horns

L 18 cm x W 12 cm x H 10 cm
Spectrometer Backend

- **Digital Fourier transform spectrometers:**
 - FPGA based
 - CMOS SoC

- **Bandwidth limitation**
 (250 km/s @ 63 μm)

- Traditionally mounted on telescope structure (CWR)
 → size & weight limit
 - make more compact and lighter
 - separate sampling (on telescope) and processing (in PI rack)
 - RF over fiber?

Zhang+ 2019

4-channel FFTS board

Klein+ 2019

CMOS SoC spectrometer

4-channel FFTS board
Conclusion

- ~100 pixel array (possibly dual polarization) is challenging but feasible
- main areas of development:
 - mixer, feedhorn, optics
 - local oscillator
 - backends
 - system aspects: electronics, power consumption, tuning

Thank you