The Rise of Metals across Time and Space, and High-Redshift Perspectives on SOFIA

Justin Spilker
Hubble Fellow, University of Texas at Austin

Students: Rebecca Levy (Maryland), Jack Saha (Texas), Gabriella Sanchez (UH-Manoa), Peter Senchyna (Arizona), Liz Tarantino (Maryland)

Also with Alberto Bolatto, Adam Leroy, Tucker Jones, Dan Marrone, Karin Sandstrom, Dan Stark, Ben Weiner
Sensitivity is the key limiting factor for real high-redshift work with SOFIA

- HAWC+ observations of rest-frame mid-IR in z~1 and z~4 lensed quasars
- Constrain buried AGN by detecting the hot dusty torus
- Both these targets have $L_{\text{IR}} \sim 10^{15} L_{\odot}$
- There just aren’t that many targets amenable to these observations!

J. Ma + 2018
z=1 lensed quasar

Leung + 2019
z=3.9 lensed quasar
High-z spectroscopy is virtually impossible without order-of-magnitude gains in raw sensitivity

- Even *Herschel* did fairly little far-IR spectroscopy

- Again concentrated on lensed starbursts & quasars, stacked spectra

Zhang+2018
Stack of 45 SPIRE spectra towards dusty starbursts
ISM more dense than local starbursts

Wardlow+2017
Stack of 45 PACS spectra towards dusty starbursts
Consistent with solar metallicity ISM
Instead we must rely on *local analogs* of high-redshift systems

- Pick nearby galaxies with some property/properties similar to those seen at high redshift
- Typical choices: mass, UV/optical colors, optical nebular line strengths & ratios, ionizing radiation field strength, …
- Often these are motivated by puzzling / difficult observations from other facilities
Two Case Studies of High-z Applications of SOFIA Observations

Understanding unusual \([O III] / [C II]\) line ratios in the reionization epoch

Tracing the rise of metals with powerful extinction-immune metallicity indicators
ALMA Finds Bright \([\text{O III}]88\text{um}\) and Faint \([\text{C II}]158\text{um}\) at \(z > 6\)

- While \([\text{C II}]\) is typically the brightest far-IR line in nearby galaxies, the galaxies responsible for reionizing the universe show very weak \([\text{C II}]\), but very bright \([\text{O III}]88\text{um}\) instead.
 - This is true even in comparison to the dwarf galaxies observed by Herschel.

- The galaxies that reionized the universe were lower-mass, more metal-poor, and had harder UV radiation fields even than most nearby dwarf galaxies.
Establishing (one possible) local analog SOFIA sample

- Select local galaxies with (locally) extreme UV properties, very low stellar mass, and HST/COS spectra
- We want objects with ionizing spectra similar to the reionization era
- Cycle 7 program, PI: B. Weiner (analysis from new-PhD Peter Senchyna)
- FIFI-LS can observe [OIII]88um and [CII]158um simultaneously
Local objects with extreme [OIII]/[CII] ratios

- We find ubiquitously high [OIII]88 / [CII]158 ratios, with values & limits consistent with $z > 6$ reionization-era galaxies

Senchyna, Weiner, JS + in prep.
Local objects with extreme [OIII]/[CII] ratios

- We find ubiquitously high [OIII]88 / [CII]158 ratios, with values & limits consistent with z > 6 reionization-era galaxies
- All have very strong C III] emission in the UV
- Perhaps C⁺ is not the dominant ionization state of carbon?

FIFI-LS Targets

Senchyna, Weiner, JS + in prep.
Two Case Studies of High-z Applications of SOFIA Observations

Understanding unusual [O III] / [C II] line ratios in the reionization epoch

Tracing the rise of metals with powerful extinction-immune metallicity indicators
The Rise and of Metals Across Time and Space

- Galaxy metallicities are the end result of a huge range of physical processes:
 - Metal-poor inflow
 - Enrichment via star formation
 - Metal-enriched outflows

- Amazingly, there’s a tight mass-metallicity relation that evolves with redshift

- However…
Highly-obscured dusty galaxies dominate star formation in the universe at $z > \sim 1$.

90% (!!) of metals from stellar evolution don’t stay in the galaxies that produced them.

- **Total Obscured + Unobscured**
- **LIRGs ($L_{IR} > 10^{11} L_{\odot}$)**
- **ULIRGs ($L_{IR} > 10^{12} L_{\odot}$)**

Total Universe SFR Density, $M_{\odot}/yr/Mpc^3$

Total Metals Produced

- Metals in Stars
- Metals in Gas
- Metals in Dust

Casey+2014 compilation

Werk+2014, many others
How to measure galaxy metallicities

- Measure multiple spectral lines, of C/N/O etc.
- Relative line ratio depends on:
 - Temperature
 - Density
 - Ionization state
 - Elemental abundances
- Measure or assume 3 of these to get the other
How to measure galaxy metallicities

- There are many metallicity calibrations. How well do they agree?
 - … very poorly.
- Problems lie in:
 - Assumptions (T_e in particular)
 - Dust along sightline

Kewley & Ellison 2008
Can we win in the far infrared?

- The far-IR has multiple advantages:
 - Temperature mostly irrelevant
 - Dust mostly irrelevant
 - Other parameters (e.g. density) easily constrained

Nagao+2011, Pereira-Santaella+2017
Developing Extinction-Free Metallicity Indicators

- We now have an indicator calibrated over \(~1\) dex in metallicity that relies *only* on far-IR fine structure lines.
- We recover a mass-metallicity relationship in agreement with SDSS work (independent check on the method).
- Only possible because FIFI-LS can get \([\text{O III}] 52\mu m\), unlike PACS.

See also T. Jones + 2020, arXiv:2006.02447 for a method using \([\text{O III}] 52\mu m\) with optical H-alpha or H-beta.
Tracking the dispersal of metals

- ~90% of all metals produced by stellar evolution don’t remain in the galaxies where they were produced.
- The get transported into the circumgalactic medium, primarily by metal-enriched galactic outflows.

Problem: Starbursts that drive these outflows are in heavily obscured regions.

Solution: Use our new far-IR metallicity diagnostics on spatially-resolved scales!
Tracking the dispersal of metals

- Are galactic winds really metal-enriched compared to their host galaxies?
- Combine new and archival FIFI-LS data to answer fundamental questions about the cycle of metals in and out of galaxies
- SPICA/Origins will do this across cosmic time

Preliminary Analysis — M82 [N III] 57um
Disk booming, [N III] detected out to ~300pc from disk!
“What the high-redshift community needs”
(a biased view)

- Sensitivity will always be key
 - Even ‘small’ ~2x gains let us access a more diverse and more distant set of (still-nearby) analogs — HIRMES-like sensitivity is very powerful
 - True far-IR high-z spectroscopy will require SPICA/Origins (~10x PACS sensitivity)

- Improved far-IR spectral resolution would be great
 - Enables dynamics / velocity-resolved observations. Need some middle-ground between FIFI±LS and upGREAT — HIRMES-like resolution supports many cases

- Need to encourage the community to be creative
 - “How can SOFIA make progress in my science area?” is a much harder question than “How can I make progress in my science area?”
 - High-z science is not a core strength of SOFIA. It is non-trivial to develop science programs that can compellingly address high-z science cases with SOFIA. Knowing that, how can we develop intuition and support creativity in the high-z community?
Conclusions

Large [OIII]/[CII] ratios at reionization can be found in the local universe. Possibly the result of very hard ionizing spectra.

- SOFIA can make valuable contributions to high-redshift science!
- Requires community effort and creativity to make the most of it

We now have a far-IR only metallicity indicator that can be used in dust-obscured systems. We can use this to trace metal enrichment on large scales.