Massive star formation science opportunities with SOFIA

Friedrich Wyrowski, MPIfR Bonn
(High-mass) clump evolution

G023.2056–0.3772 IRAC + 870 μm Contours

https://atlasgal.mpifr-bonn.mpg.de

G3CC 38
(l = 339.584, b = −0.127)

Morph. type: EC1

[DBS2003] 176
(l = 343.482, b = −0.042)

Morph. type: OC0

Morales+2013
Key MSF questions

Recent reviews: Motte+2018, Rosen+2020

- Fragmentation and mass assembly
- Accretion/Outflows/Jets
- Dynamics of inflow/infall
- Clump cooling
- Timescales
- Feedback processes
- Role of magnetic fields

Current concepts, e.g.

- Turbulent core model (McKee & Tan 2003), monolithic collapse
- Competitive accretion (Bonnell+1998)
- Global hierarchical collapse (Vazquez-Semadeni+2019)

→ Different kinematical signatures
Key MSF questions

- Fragmentation and mass assembly → ALMA/NOEMA
- Accretion/Outflows/Jets → Fischer talk: time variability / SOMA
- Dynamics of inflow/infall
- Clump cooling
- Timescales
- Feedback processes → Pabst talk, FEEDBACK
- Role of magnetic fields → Stephens talk, pilot legacy programs
FIR: Roadmap
W3 IRS5
Karska+2013

Fig. 1. Herschel-PACS continuum-normalized spectrum of W3 IRS5 at the central position. Lines of CO are shown in red, H$_2$C in blue, OH in light blue, CH in orange, and atoms and ions in green. Horizontal magenta lines show spectral regions zoomed in Figure C.1.
Unique spectroscopy in the FIR

- Only the FIR offers:
 - Dense cloud cooling: Access to major fine-structure cooling lines
 - Dense cloud kinematics: Access to absorption lines in front of dust
 - Dense cloud excitation: Access to high excitation of abundant and chemically (relatively) stable CO
 - Dense clouds chemistry: Access to hydrides as initial products of ISM chemistry → Neufeld Talk, HyGAL

Velocity resolved spectra crucial for dynamics, kinematics, excitation (optical depth effects)
Science case examples
(small selection with strong personal bias)

• Cooling budget separated into different components
• High-J CO to probe excitation/kinematics
• Infall/accretion onto protostars/clusters
• Timescales: chemical clocks
OI: from PACS to GREAT

Leurini+2015

Karska+2013
OI: from PACS to GREAT

Leurini+2015

Karska+2013
Cooling budget

- OI, CII, CO, OH, (H$_2$O)
- Census of cooling in a wide range of conditions
- High spectral resolution mandatory
 - to separate different physical components (e.g. outflow, envelope, different density regimes) and
 - to address optical depths effects
- SOFIA allows already important pathfinder and individual source studies but will for larger statistical samples more sensitivity and spatial coverages are needed.
- Range spectroscopy? Or many lines simultaneously with HIRMES like instrument.
- For dense regions, OI crucial! For excitation and in cases where OI 63μm is optically thick, OI 145μm necessary (potentially in combination with CII 157μm) → GREAT
CO SLEDs
e.g. HH46 (van Kempen+2010)

Fig. 2. CO line fluxes observed in the central PACS spaxel ($J_u > 10$) and with APEX ($J_u < 10$). Model fluxes are used to estimate the ratio of flux in a fictive PACS spaxel at the APEX wavelength and the observed APEX flux. Overplotted are predictions from a passively heated envelope (blue), a UV-heated cavity (green), and small-scale shocks in the cavity walls (red). The black line is the sum of the three. A cartoon of the different components is shown in the inset.
A. Karska et al. 2013: Far-infrared molecular lines from Low- to High-Mass Star Forming Regions observed with Herschel
CO SEDs

- CO chemically relative stable in warm gas
- Wide range of excitation can be covered → important cooling contribution
- For Galactic sources, high spectral resolution needed to separated line components arising from different exciting processes
- Again: range spec./many lines simultaneously
(High-mass) clump evolution

Infall is a fundamental process in SF!
Key questions SOFIA can address

- What are the infall speeds? Are free-fall velocities measured or is the infall slowed down?
- Which parts of the clouds take part in the infall? Is the infall local or global?
- What is the velocity profile of the infall?
- What are the corresponding timelines, hence in which evolutionary stages can infall be measured?
- What are the infall rates and can they be converted into accretion rates? Are the accretion rates high enough to overcome radiation pressure?
Infall in star forming regions

• New approach:
 - Employ absorption of THz lines in front of dust continuum as more straightforward tool (previously only studies in the cm towards evolved stages, HII regions and mm/submm blue-skewed selfabsorption)

• Determine infall rates on LOS
• Probe abundances in envelope
• Study infall through the evolution of star forming clumps
Search for infall

I: Blue-skewed profiles
 Needs excitation gradient, right tau
II: red-shifted absorption
 Needs high critical density, central continuum

- Evans 1999
Ammonia

- cm: Inversion lines
- FIR: Rotational lines, high n_{crit}
- overabundant in hot cores, apparently no depletion in cold sources

Figure 1 Energy level diagram of rotation-inversion states. J is the total angular-momentum quantum number, and K is the projected angular momentum along the molecular axis.
SOFIA results: Wyrowski+2012,2016

New data from 2016:

- 5 new redshifted absorption with shifts of 0.2 – 1.6 km/s with respect to 17O
- 1 source dominated by outflow (G5.89), several blue wings
- 2 sources with blue shifted absorption

Clumps in IRDCs

Fig 2. NH$_3$ 3$_{2}$–2$_{1}$ spectra of the observed sources. Results of Gaussian fits to the line profiles are overlaid in green. The systemic velocities of the sources, determined using 17O (3–2), are shown with dotted lines. W49N shows in addition at 30 km/s the NH$_3$ 3$_{1}$–2$_{1}$ from the other sideband.
Modeling: RATRAN + Outflow component

HCO$^+$ usually probing additional outflow component → RATRAN modification of Mottram+2013

Additional parameter:
- outflow widths/strength
- HCO$^+$ abundance
Modeling results
Wyrowski+2016

<table>
<thead>
<tr>
<th>Source</th>
<th>R_{out} (pc)</th>
<th>α_n</th>
<th>$n_{1\text{pc}}$ (10^3cm^{-3})</th>
<th>δv_t (km/s)</th>
<th>f_{ff}</th>
<th>$X(\text{NH}_3)$ 10^{-8}</th>
<th>$X(\text{HCO}^+)$ 10^{-10}</th>
<th>\dot{M} ($10^{-3} M_\odot/\text{yr}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G34.26+0.2</td>
<td>0.8</td>
<td>-1.7</td>
<td>10</td>
<td>2.4</td>
<td>0.3</td>
<td>0.19</td>
<td>0.25</td>
<td>9</td>
</tr>
<tr>
<td>G327.29-0.6</td>
<td>2.0</td>
<td>-1.9</td>
<td>10</td>
<td>2.3</td>
<td>0.05</td>
<td>0.5</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>G351.58-0.4</td>
<td>1.8</td>
<td>-1.9</td>
<td>15</td>
<td>1.5</td>
<td>0.1</td>
<td>1.5</td>
<td>0.2</td>
<td>16</td>
</tr>
<tr>
<td>G23.21-0.3</td>
<td>1.8</td>
<td>-2.0</td>
<td>4.5</td>
<td>1.0</td>
<td>0.2</td>
<td>1.5</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>G35.20-0.7</td>
<td>1.5</td>
<td>-1.6</td>
<td>5.5</td>
<td>1.5</td>
<td>0.03</td>
<td>0.35</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>G34.41+0.2</td>
<td>1.0</td>
<td>-1.6</td>
<td>5</td>
<td>1.5</td>
<td>0.1</td>
<td>0.15</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Modeling of sources results in infall with fractions of free-fall of 3 – 30 %. Clump scale probed. To further constrain models, → measure larger spatial range
Different excitation traces
different v

- infall accelerating towards
inner part of clump

Future SOFIA opportunities:

- GS 572 GHz @ 90%
transmission (4GREAT)

- 1214 GHz (201-100, 211-110)
@ 65%

- 2355 GHz (4-3 lines) @ 63%
Search for large scale infall

- Extended dust continuum, ~0.5pc
- Infall localized or global?
- Infer 3D velocity pattern.
- Search for velocity gradients, rotation?
Potential probes of infall for future SOFIA studies

- **HNCO** (range in E)
- Possible from the ground, but only lower J lines

Neill+2014: SgrB2(N) with Herschel/HIFI
Potential probes of infall for future SOFIA studies

- HNCO (range in E)
- NH, NH$_2$ (HFS)
- H$_2$O (H$_2^{18}$O), warm gas filter
- H$_2$S, o/p ratio
- H$_2$D$^+$, OD cold gas
- H$_2$, 28μm, cold gas
Karska+2013: W3IRS5

Still lots of discovery space, e.g.:

- OH, 65μm doublet
- Relatively close to OI
- $E_{\text{lower}} = 290 \text{ K}$
- PACS: Massive star forming regions
H$_2$D$^+$ observations give an age of at least one million years for a cloud core forming Sun-like stars

Sandra Brünken1, Olli Sipilä2,3, Edward T. Chambers1, Jorma Harju2, Paola Caselli3,4, Oskar Asvany1, Cornelia E. Honingh1, Tomasz Kamiński5, Karl M. Menten5, Jürgen Stutzki1 & Stephan Schlemmer1

Work on HM clumps ongoing. APEX: Giannetti+2019, Modelling e.g. Körtgen+2017. See also D$_2$H$^+$ (Harju+2017)
Probing the circumstellar disk in AFGL2136
Synergies between EXES/TEXES/CRIRES and ALMA
(Indriolo+2020)

- Hot disk emission from clumpy disk structure
- H_2O: 500-800K
- $\tau_l(\lambda)$
- + other molecules (CO, HCN, NH_3, HF, C_2H_2) and unidentified lines

![Graph showing example fits to water lines and all data separated by instrument/telescope](image_url)
EXES rovib. CS (Barr+2017)

- AFGL2591: Base of outflow in hot core (130AU, 0.04")
Spectroscopy towards statistically significant samples

- GMCs sizes on sky often within sqdeg → no adjustment of flight direction needed
- Increase efficiency for rapid observations of many targets within sqdeg
- e.g.: 40 cores in CygX in HR mode with HIRMES-like instrument in many lines. Also EXES/4GREAT projects would benefit
- While a lot can be learnt from individual sources, large samples allow to average out random traits and facilitate comparison to simulations
Summary

• HMSF studies with SOFIA, key requirements:
 – High spectral resolution to probe kinematics and deal with optical depths effects
 – Range of lines to probe different scales and evolutionary stages
 – Significant samples to probe large parameter space

• In general
 – increase sensitivity, efficiency
 – Explore new frequency ranges