Discovery of Broad Molecular lines and of Shocked Molecular Hydrogen from the Supernova Remnant G357.7+0.3 (Square SNR): HHSMT, APEX, Spitzer and SOFIA Observations

Rho (SETI Institute and SOFIA Science Center), J. Bieging (U. Arizona), J. Hewitt (U. North Florida), M. Andersen (Gemini Observatory), W. T. Reach (SSC/USRA) and R. Güsten (MPIfR) (ApJ, in press)

The SNR G357.7+0.3 and Turbulence of Molecular Clouds (MC)
- G357.7+0.3: relatively unknown and under studied SNR.
- OH masers detected (crosses): NW rim (Hewitt et al. 2008)
- Soft X-rays with T=5.4x10^4 K and an age of 10,000 yr (Leahy 1989) and a shell like radio morphology (right).
- SN shocks cause turbulence in molecular clouds which could enhance/initiate star formation.

Observations
- ARO HH(Heinrich Hertz) SMT (2003, 2006): CO(2-1), CO(3-2)
- ARO 12-Meter: 13CO(1-0), HCO$^+$
- Spitzer IRS (2005): 8-40 μm including H$_2$ S(0)-S(7) lines
- SOFIA far-IR spectrometer GREAT (2013): [C II], CO(11-10)
- APEX in Chile (2015): CO(2-1), CO(3-2), CO(4-3), 13CO(3-2), 13CO(2-1)

SOFIA Observations of [C II] and CO(11-10)
- [C II] 157 μm has 3σ detection with ΔV~16 km/s and its profile is similar to those of CO lines, indicating C-shock origin.
- CO(11-10) is not detected.
- Each spectrum has only 5 min integration time.

The similarity between [C II] and CO profile suggests that [C II] is also from low velocity C-shock.

Spitzer Shocked H$_2$ Emission of G357.7+0.3
- Spitzer IRS spectrum shows rotational H$_2$ lines.
- (left) Each H$_2$ map shows different structures.
- H$_2$ excitation diagram can be fit with two component LTE model with T=200 and 660 K (above), and favors 2 C-shock model over a combination of C- and J-shock models (below).

RADEX model of CO
- G357.7+0.3 shows lack of high-J line; Non-LTE model yields a best-fit (right) of N(CO) = 6.8x10^{16} cm$^{-2}$, size=0.01 pc, kinetic temperature of kT=60-200K, n(H$_2$) = 6.3x10^{3} cm$^{-3}$ (relatively low density).
- In contrast, G349.7+0.2 shows bright high-J line (below, Rho et al. 2015).

G357.7+0.3

The broad CO lines appear from NE to SW, and the broad lines likely extend out side this map.

Broad CO Molecular Line Map
- [C II] at 157 μm has 3σ detection with ΔV~16 km/s and its profile is similar to those of CO lines, indicating C-shock origin.
- CO(11-10) is not detected.
- Each spectrum has only 5 min integration time.

[12CO(1-0) map of G357.7+0.3 showing the clouds at NW and S. GRID spectra of CO(2-1) to cover 5x5 arcmin area.
- Blue (-53 to -38 km/s), middle (absorption dip: -38 to -31 km/s) and red (-31 to -27 km/s) velocity wings of CO(2-1) maps.

Discovery of Broad CO and HCO+ lines using HHSMT and APEX
- Broad lines with widths of 15-30 km/s
- 12CO(4-3), 12CO(3-2), 12CO(2-1), HCO$^+$(1-0), 13CO(3-2), 13CO(2-1)
- Absorption dip is anti-correlated with 13CO(1-0) (from the parent cloud which is cold gas)
- Unrelated gas at -58, -13, -2, and 13 km/s

G357.7+0.3:
- Relatively unknown and understudied SNR.
- OH masers detected (crosses): NW rim (Hewitt et al. 2008)
- Soft X-rays with T=5.4x10^4 K and an age of 10,000 yr (Leahy 1989) and a shell like radio morphology (right).
- SN shocks cause turbulence in molecular clouds which could enhance/initiate star formation.

Spitzer IRS (2005): 8-40 μm including H$_2$ S(0)-S(7) lines
- SOFIA far-IR spectrometer GREAT (2013): [C II], CO(11-10)
- APEX in Chile (2015): CO(2-1), CO(3-2), CO(4-3), 13CO(3-2), 13CO(2-1)

HHSMT, APEX, Spitzer and SOFIA Observations